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Transformer-Based Text-to-Speech

e Autoregressive Transformer-based TTS systems

. . E I
o Unparalleled naturalness/quality/expressiveness R
o Can effectively scale up to large datasets. Input:
e However, they have trouble paying attention to by Pliene BrlseE 18
: 1-800-9999-2.
the input

o Poor text adherence (repeat / drop words) Outout:

o Especially with text containing repeated My phone number is
words/digits. 1-800-99999999-2.

o Cannot generalize beyond the max training length
e This problem also existed pre-Transformer (in

attention-based seg2seq systems)
o Butit's worse with Transformers



Existing Approaches to Improving Robustness

e Go back to doing explicit duration modeling using force
aligned training data [ELLA-V]

e Use an RNN-T-like Transducer mechanism [VALL-T]

e Limit cross-attention to a single layer with a single head
over a narrow monotonically advancing window [MQ-TTS]

e These complicate training, hurt inference efficiency, and/or
reduce the power of the standard Transformer architecture.




System Overview

Basic Discrete TTS System A
e Encoder-Decoder model B
e Text (phonemes) processed by bidirectional encoder § )
o Encoder = conv + self-attention ( T el Spectiogfam

e ITransformer-based decoder

o Attends to encoded text using multiple cross-attention layers
o Models sequence of integer codes produced by VQ-VAE Integer Codes
( )

e VQ-VAE converts integer codes to mel spectrogram Autoregressive

VQ-VAE Decoder

e Neural vocoder converts mel spectrogram to L DeC‘?der
waveform _ Atte
Encoder

A

Text Input




T5 Baseline Decoder
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e Problem: No cross-attention RPBs Previous
o  No sense of relative position between input/output Decoder Outputs y(<n)

o Leads to stability problems
Google:




T5 Baseline Decoder -> Very Attentive Decoder
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Very Attentive Tacotron Decoder

0 Decoder Output y(n)
Very Attentive Decoder :
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e Non-integer valued, differentiable. Alignment Block
e RPBs are only defined for integer relative positions. Previolls (:n )
e IRPBs = Interpolated Relative Position Biases Decoder Outputs Y

o Linearly interpolate between adjacent RPB values



Very Attentive Tacotron Decoder

- Decoder Output y(n)
Very Attentive Tacotron Decoder :
[ AR Categorical ]
A
[ Dropout
e Alignment block produces monotonic — I —
alignment position P T _ .
o Position is latent and cannot be teacher forced I( [ Feedforward }
o Updated each decoder step by small RNN-based o L Block )
subnetwork 5 o L Re|;tive |
e Alignment position provides relative 8 S|+ Cross-Attention [
[ [ . [ C
positions to IRPBs in all cross-attention wol | 1 Block )|
|ayers — : [ Self-Attention | : §
: Block | 2
\ f XN %
Alignment Block |
Previous (<n)
Decoder Outputs y




Experiments

e Models trained on private and public (LibriTTS) datasets:

o T5 Baseline
o Very Attentive Tacotron (VAT)
o Additional baselines: Tacotron-GMMA, Non-Attentive Tacotron (NAT)

e FEvaluations:

o Naturalness (MOS / SxS)

o Robustness (ASR-based CER)

o Length generalization (ASR-based CER)
o Repeated words stress test



Results: Naturalness, Robustness

e VAT matches naturalness of T5

baseline (MOS /SXS) Lessac Voice MOS SxS vs VAT CER

o Beats Tacotron-GMMA / NAT Ground Truth 4.00 +0.07 29

VAT 3.68 +0.08 — 3.3

TS5 Baseline 3.75 £0.07 | -0.06 £0.14 10.2

e VAT has superior robustness Tacotron-GMMA?®  3.62 +0.08 |-0.32 +0.14 | 3.7

compared to T5 baseline LibriTTS MOS  SxSvs VAT CER
(CER).

Ground Truth 3.70 +0.09 3.6

VAT 3.16 +0.09 — 4.6

TS5 Baseline 3.07 +0.09 0.01 =0.14 10.7

NAT 3.22 +0.08 | -0.12 +£0.15 3.3




Results: Length Generalization, Repeated Words

ASR-Based Length Generalization: Lessac Voice

140 A N
e Length generalization: £ o] AL - -
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o Models trained on 10 sec utterances. 5 o / e -
o T5 baseline fails beyond 12 sec. g ol
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N s

600 800 1000 1200 1400

e Repeated words: TR
12s 24s 36s 48s 60s 72s 84s
0 Stress test temp'ates Utterance Length [characters, ~ seconds]
m 3 templates, 1-9 repetitions each.
ASR Length Generalization: LibriTTS Models

m  e.g., "My phone number is 1-800-[9,...,9]-2 \
o T5 baseline: Errors on 52% of phrases. S PN ECW A
o VAT: No mistakes. g ° e
S 60 e AT
E / -=- T5 Baseline
L:ITJ; 40 e NAC
O -t
04 e
260 460 660 8(')0 10‘00 12I00 14'00
12s 24s 36s 48s 60s 72s 84s

Utterance Length [characters, ~ seconds]




Repeated Digits Examples

e T5 Baseline <[)
e Input: “My phone number is 1, 800, 9, 9, 9, 9, 2"
e Actual: “My phone numberis 1, 800, 9,9,9,9,9,9,9, 9, 27

e Very Attentive Tacotron
e Input: “My phone numberis 1, 800, 9,9,9,9,9,9,9,9, 9, 2"
e Actual: “My phone numberis 1, 800, 9,9,9,9,9,9,9,9,9, 27




Longform Examples

(Models trained on <10sec utterances)

Today, we're introducing "Very Attentive Tacotron." It's a new
text-to-speech system from Google powered by discrete audio
e T5 Baseline tokens and an autoregressive Transformer. But that's not all! It
can faithfully synthesize long text into speech; well over a
minute. Yes, that's many times longer than the examples seen
K during training. No more dropping words, no more repetitions,
and no more erratic outputs... all without a duration model!

Our approach uses an alignment mechanism to provide

cross-attention operations with relative location information.
. The associated alignment position is learned as a latent
e Very Attentive Tacotron property of the model via backprop and requires no external
alignment information during training.
) While the approach is tailored to the monotonic nature of TTS
input-output alignment, it is still able to benefit from the flexible
modeling power of interleaved, multi-head, self- and cross-
attention operations.

Our system matches the naturalness and expressiveness of
a baseline, discrete, autoregressive T5-based system while
generalizing to any practical utterance length.




Discussion

e Slight efficiency hit during training due to serialized

alignment computations.
o Butnot amajorissue. Mitigations discussed in paper.

’ In the pa per We also discuss: Learned IRPBs: Encoder Self-Attention Layer 2
o Initializing and constraining IRPBs for consistency and stability. ] ‘\
o Details behind RPBs, IRPBs, relative cross-attention, alignment 3] /\\
layer £ \
o What patterns emerge in learned IRPBs? o /J;J“\\

o Training and architecture specifics
o And much more!
e Future work
o Apply to other monotonic seg2seq tasks like ASR.

o Adapting VAT for decoder-only models
o (They’re so hot right now!)

Learned IRPB Bias Matrix: Encoder Self-Attention Layer 2

o N IN o ®



Resources

e Paper:
o https://arxiv.org/abs/2410.22179
e Audio examples:
o https://google.github.io/tacotron/publications/very attentive t
acotron/index.html
e Code examples:
o https://github.com/google/sequence-
layers/blob/main/examples/very attentive tacotron.py

o (Links available in the paper)



https://arxiv.org/abs/2410.22179
https://google.github.io/tacotron/publications/very_attentive_tacotron/index.html
https://google.github.io/tacotron/publications/very_attentive_tacotron/index.html
https://github.com/google/sequence-layers/blob/main/examples/very_attentive_tacotron.py
https://github.com/google/sequence-layers/blob/main/examples/very_attentive_tacotron.py
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