
Wave-Tacotron: Spectrogram-free
end-to-end text-to-speech synthesis

∿🌮🤖
R. J. Weiss, R. J. Skerry-Ryan, E. Battenberg, S. Mariooryad, and D. P. Kingma

IEEE ICASSP 2021

∿🌮🤖 ?

● TTS* in one sequence-to-sequence model
○ no vocoder

● Directly predict sequence of ~10-50ms waveform blocks
○ no spectrograms anywhere

● Goal: fast waveform generation

2* really normalized-text- or phoneme-to-speech

∿🌮🤖 waveform blocksnormalized text /
phonemes Encoder Decoder

🌮🤖 waveformEncoder Decodernormalized text /
phonemes Vocoder

spectrogram

🌮🤖 Tacotron

3

Phone
Embedding

LSTM +
Attention

Encoder
Pre-Net

Input
phonemes

2 Residual
LSTM layers Linear

Projection

Linear
Projection

Stop Token

spectrogram

WaveRNN Waveform
Samples

CBHG

En
co

de
r

D
ec

od
er

2 Layer
Pre-Net

● Encoder maps input phonemes to latent representation
● Autoregressive decoder generates mel spectrogram one frame at a time
● Separately trained vocoder network to invert spectrogram to waveform

○ e.g., WaveRNN, slow sample-by-sample autoregressive network

Wang, et al., Tacotron: Towards End-to-End Speech Synthesis. Interspeech 2017.
Shen, et al., Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions. ICASSP 2018.
Kalchbrenner, et al., Efficient Neural Audio Synthesis. ICML 2018.

http://google3/audio/hearing/tts/tensorflow/borg/common.borg?l=992-998&rcl=326549389
http://google3/audio/hearing/tts/tensorflow/borg/common.borg?l=1017-1092&rcl=326549389

s/spectrogram frame/waveform block/

● Segment waveform into non-overlapping blocks
○ K = 960 samples, 40 ms at 24 kHz sample rate

● Block-autoregressive generation, each decoder step generates a new block
○ waveform samples in each block generated in parallel, much faster than WaveRNN

K samples

4

∿🌮🤖 Architecture

xN xM noise
zt

EmbedInput tokens

Linear
Proj.

Residual
LSTM x4

Enc. Pre-Net CBHG

LSTM +
Attention concat2 Layer

Pre-Net

Flow loss

EOS loss

waveform block
yt

ActNorm

Stop token

Squeeze ActNorm Invertible
1x1 Conv

yt-1

e1:I

ct
cond. features

Squeeze UnsqueezeAffine
Coupling

● Replace post-net and vocoder with conditional normalizing flow
P(yt | ct) = P(yt | y1:t-1, e1:l)

 = P(yt | previous waveform blocks, text)

● Tacotron encoder/decoder predicts flow conditioning features

● Train end-to-end, maximize likelihood of training data

5

Related work

6

Prenger, et al., WaveGlow: A Flow-based Generative Network for Speech Synthesis. ICASSP 2019.
Kim, et al., FloWaveNet : A Generative Flow for Raw Audio. ICML 2019.
Ping, et al., Waveflow: A compact flow-based model for raw audio. ICML 2020.
Miao, et al., Flow-TTS: A non-autoregressive network for text to speech based on flow. ICASSP 2020.
Kim, et al., Glow-TTS: A generative flow for text-to-speech via monotonic alignment search. NeurIPS 2020.
Valle, et al., Flowtron: an autoregressive flow-based generative network for text-to-speech synthesis. ICLR 2021.
Donahue, et al., End-to-end Adversarial Text-to-Speech, ICLR 2021.
Ren, et al., FastSpeech 2: Fast and High-Quality End-to-End Text to Speech, ICLR 2021.

flow● Flow-based neural vocoders
○ generate waveforms from mel spectrograms
○ WaveGlow [Prenger et al., 2019], FloWaveNet [Kim et al., 2019]

WaveFlow [Ping et al., 2020]

● Flow TTS models
○ generate mel spectrograms from text
○ parallel: Flow-TTS [Miao et al., 2020], Glow-TTS [Kim, Kim, et al., 2020]
○ autoregressive: Flowtron [Valle et al., 2021]

● Direct-to-waveform TTS
○ adversarial training
○ use mel spectrograms to help learn alignment, or as loss functions
○ EATS [Donahue et al., 2021], Fastspeech 2s [Ren et al., 2021]

GANtext

flowtext

https://arxiv.org/abs/1811.00002
http://proceedings.mlr.press/v97/kim19b.html
https://arxiv.org/abs/1912.01219
https://ieeexplore.ieee.org/abstract/document/9054484/
https://arxiv.org/abs/2005.11129
https://arxiv.org/abs/2005.05957
https://arxiv.org/abs/2006.03575
https://arxiv.org/abs/2006.04558

Normalizing flow

● Model joint distribution of K samples: P(yt1, yt2, ..., ytK | ct)
○ multiscale architecture, similar to FloWaveNet [Kim et al., 2019] neural vocoder

■ M = 5 stages, each with N = 12 steps

● Invertible network
○ training: transform waveform block into noise
○ sampling: transform noise sample into waveform block using inverse

● Change of variables yt = g(zt; ct)
● Maximize likelihood P(yt | ct) = P(zt | ct) |det(dzt / dyt)|

Kim, et al., FloWaveNet : A Generative Flow for Raw Audio. ICML 2019.
7

xN xM

ActNorm Invertible
1x1 Conv

Affine
Coupling ActNorm Squeeze

conditioning
features

waveform
block noiseztyt

ct

http://proceedings.mlr.press/v97/kim19b.html

∿🌮🤖 Training

xN xM noise
zt

EmbedInput tokens

Linear
Proj.

Residual
LSTM x4

Enc. Pre-Net CBHG

LSTM +
Attention concat2 Layer

Pre-Net

Flow loss

EOS loss

waveform block
yt

ActNorm

Stop token

Squeeze ActNorm Invertible
1x1 Conv

yt-1

e1:I

ct
cond. features

Squeeze UnsqueezeAffine
Coupling

● Teacher forced conditioning

● At each step: transform waveform block yt into noise zt

● Flow loss: -log P(y) = sumt -log P(yt | ct)
 = sumt -log N(g-1(yt; ct); 0, I) - log |det(dg-1(yt; ct) / dyt)|

 spherical Gaussian Jacobian determinant

● EOS stop token classifier loss: P(t is last frame)

8

∿🌮🤖 Sampling

● Invert the flow network
○ take inverse of each layer, reverse order

● At each step
○ sample a noise vector
○ pass through flow to generate waveform block
○ autoregressive conditioning on previous output yt-1

● concatenate blocks yt to form final signal
○ y = vstack(yt)

xN xM noise
zt

EmbedInput tokens

Linear
Proj.

Residual
LSTM x4

Enc. Pre-Net CBHG

LSTM +
Attention concat2 Layer

Pre-Net

waveform block
yt

ActNorm

Stop token

Unsqueeze ActNorm Invertible
1x1 Conv

yt-1

e1:I

ct
cond. features

Unsqueeze SqueezeAffine
Coupling

-1 -1 -1 -1

9

zt ~ N(0, I)
yt = g(zt; ct)

Experiment configuration

● Systems
○ Tacotron-PN (postnet) + Griffin-Lim (à la Tacotron)
○ Tacotron + WaveRNN (à la Tacotron 2)
○ Tacotron + Flow vocoder

■ identical Tacotron model
■ fully parallel vocoder (similar flow architecture to Wave-Tacotron, 6 stages)

○ Wave-Tacotron

● Datasets - US English, single female speaker, sampled at 24 kHz
○ Proprietary

■ 39 hours training
■ average duration: 3.3 seconds

○ LJ Speech
■ 22 hours training
■ average duration: 10 seconds

10

Generation speed

● Seconds to generate 5 seconds of speech
○ 90 input tokens, batch size 1

● Wave-Tacotron ~10x faster than real-time on TPU (2x on CPU)
○ slower as frame size K decreases (more autoregressive steps)

● ~10x faster than Tacotron + WaveRNN on TPU (25x on CPU)

11

Experiments: proprietary data

● Subjective listening tests rating speech
naturalness

○ MOS on 5 point scale

● Tacotron + WaveRNN best
○ char / phoneme roughly par

● Wave-Tacotron trails by ~0.2 points
○ phoneme > char
○ network uses capacity to model detailed

waveform structure instead of pronunciation?

● Large gap to Tacotron-PN and
Tacotron + Flowcoder

12
source: https://google.github.io/tacotron/publications/wave-tacotron/#architecture-comparison-on-single-speaker-proprietary-dataset

Ground truth

Tacotron-PN +
Griffin-Lim

Tacotron +
WaveRNN

Tacotron +
Flowcoder

Wave-Tacotron

https://google.github.io/tacotron/publications/wave-tacotron/#architecture-comparison-on-single-speaker-proprietary-dataset

Experiments: LJ Speech

● Longer average utterance duration,
halve training batch size to 128

● Similar trend to models trained on proprietary
data
Tacotron+WaveRNN >> Wave-Tacotron > others

● Larger gap between Tacotron+WaveRNN and
Wave-Tacotron

○ need more training data for more end-to-end task?
○ and/or better tuning?

13

source: https://google.github.io/tacotron/publications/wave-tacotron/#architecture-comparison-on-single-speaker-ljspeech-dataset

Ground truth

Tacotron-PN +
Griffin-Lim

Tacotron +
WaveRNN

Tacotron +
Flowcoder

Wave-Tacotron

https://google.github.io/tacotron/publications/wave-tacotron/#architecture-comparison-on-single-speaker-ljspeech-dataset

Sample variability

● Baseline Tacostron generate
very consistent samples

○ same prosody every time

● Wave-Tacotron has high variance
○ captures multimodal training distribution?

■ Tacotron regression loss collapses to
single prosody mode?

○ similar pattern in Flowtron [Valle et al., 2021]

Valle, et al., Flowtron: an Autoregressive Flow-based Generative Network for Text-to-Speech Synthesis . ICLR 2021.
14

https://arxiv.org/abs/2005.05957

Summary

● Sequence-to-sequence text-to-speech synthesis without spectrograms
○ block-autoregressive normalizing flow

● End-to-end training, maximizing likelihood

● High fidelity output
○ trails Tacotron + WaveRNN baseline
○ higher sample variation, captures multimodal training data?

● ~10x faster than real-time synthesis on TPU

15

Sound examples:
https://google.github.io/tacotron/publications/wave-tacotron

https://google.github.io/tacotron/publications/wave-tacotron

Extra slides

Multiscale flow

● Squeeze K sample waveform block into K/L frames
○ base frame length L = 10 samples

● Squeeze after each stage
○ doubles dimension, halves frame rate

● M = 5 stages, each processes signal at different scale
○ N = 12 steps per stage
○ deep convnet: M N = 60 total steps

17
Dinh, et al., NICE: Non-linear independent components estimation. ICLR 2015.

Step xNSqz(L) Unsqz ztyt Sqz

Average
Frames

Sqz

Average
Framespos. embeddings

J positions

cond. features ct
repeated J times

Step xN Step xN

2M-1L x J/2M-1

1 x K 1 x K
L x J 2L x J/2

where J = K/L

fine coarse

Experiments: Ablations

● 2 layer decoder LSTM, 256 flow channels

● Optimal sampling temperature T = 0.7
○ zt ~ N(zt; 0, T I)

● Architecture details
○ pre-emphasis, position embedding
○ flow width
○ number of stages / multiscale architecture

● Varying block size K
○ quality starts degrading if K > 40 ms

18

Unconditional generation

● Remove encoder and attention, condition only on previous samples
P(yt | ct) = P(yt | y1:t-1) = P(yt | previous waveform blocks)

● Generates coherent syllables, occasional words

19

xN xM noise
zt

Linear
Proj.

Residual
LSTM x4

2 Layer
Pre-Net

waveform block
yt

ActNorm

Stop token

Unsqueeze ActNorm Invertible
1x1 Conv

yt-1 ct
cond. features

Unsqueeze SqueezeAffine
Coupling

-1 -1 -1 -1

source: https://google.github.io/tacotron/publications/wave-tacotron/#unconditional-generation

https://google.github.io/tacotron/publications/wave-tacotron/#unconditional-generation

