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ABSTRACT

We present a system for the high-level analysis of beat-
synchronous drum patterns to be used as part of a compre-
hensive rhythmic understanding system. We use a multi-
layer neural network, which is greedily pre-trained layer-
by-layer using restriced Boltzmann machines (RBMs), in
order to model the contextual time-sequence information
of a drum pattern. For the input layer of the network, we
use a conditional RBM, which has been shown to be an ef-
fective generative model of multi-dimensional sequences.
Subsequent layers of the neural network can be pre-trained
as conditional or standard RBMs in order to learn higher-
level rhythmic features. We show that this model can be
fine-tuned in a discriminative manner to make accurate pre-
dictions about beat-measure alignment. The model gen-
eralizes well to multiple rhythmic styles due to the dis-
tributed state-space of the multi-layer neural network. In
addition, the outputs of the discriminative network can serve
as posterior probabilities over beat-alignment labels. These
posterior probabilities can be used for Viterbi decoding in
a hidden Markov model in order to maintain temporal con-
tinuity of the predicted information.

1. INTRODUCTION

Deep belief networks (DBNs) have shown promise in many
discriminative tasks, such as written digit recognition [6]
and speech recognition [8]. In addition, the generative na-
ture of DBNs makes them especially well-suited for stochas-
tic generation of images or sequences [5, 11].

In this paper, we apply DBNs to the analysis of drum
patterns. The drum pattern analysis system presented here
is to be part of a complete live drum understanding system,
which is also composed of a drum detection front-end [1]
and a low-level multi-hypothesis beat tracker. The goal
of the drum understanding system is to go beyond simple
beat tracking by providing additional high-level rhythmic
information, such as time signature or style information,
while being robust to expressive embellishments and dy-
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namic song structure, such as tempo fluctuations or time
signature changes. The pattern analysis system we present
here can help achieve these goals, not only by providing
the desired high-level information, but also by communi-
cating with the low-level beat tracker to help it correct beat
period and phase errors.

To demonstrate the effectiveness of this model, we fo-
cus on a specific discriminative task: identifying the align-
ment of beats within a measure. Measure alignment infor-
mation is particularly important to high-level drum pattern
analysis since each beat has a specific meaning depend-
ing upon the musical style. For example, song transitions
typically occur on the first beat of a measure, and in rock
music and relate styles, beats 2 and 4 typically feature an
accented snare drum back beat.

Previous work on beat-measure alignment has focused
on simple heuristic rules. In [7], Klapuri presents a beat
tracker that determines beat-measure alignment by corre-
lating multi-band onset patterns with two different back
beat measure templates. In [3], Goto addresses beat align-
ment by detecting chord change locations and by align-
ment with 8 drum pattern templates. Approaches like these
work well for the typical pop song but are ineffective when
presented with exotic rhythm styles or many types of pro-
gressive music. To deal with these situations, rather than
accruing a large list of hand-written heuristic rules, we can
automatically encode a large amount of musical knowl-
edge into the distributed state-space [2] of a deep belief
network, which we introduce in the next section.

2. DEEP BELIEF NETWORKS
2.1 The Restricted Boltzmann Machine

The deep belief network is a probabilistic multi-layer neu-
ral network composed of restricted Boltzmann machines,
or RBMs [2,5]. The RBM, as shown in Figure 1, is a two
layer probabilistic graphical model with undirected con-
nections between visible layer units, v;, and hidden layer
units, h;. The “restricted” part of the name points to the
fact that there are no connections between units in the same
layer. This allows the conditional distribution of the units
of one layer given all the units of the other layer to be com-
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Figure 1. A restricted Boltzmann machine with NV visible
units and M hidden units.

pletely factorial, i.e.
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The RBM is a probabilistic energy-based model, meaning
the probability of a specific configuration of the visible and
hidden units is proportional to the negative exponentiation
of an energy function, F(v, h)

e—E(v,h)

P(v,h) = 7
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Where Z = > ,, exp(—E(v,h)) is a normalizing con-
stant referred to as the partition function. Note that be-
cause Z is difficult to compute, it is typically intractable to
compute the joint distribution P(v,h).

For binary-valued visible and hidden units, the energy
function, E'(v, h), can be written as:

E(v,h) = —a'v —b"h — vIWh 4)

Where a and b are vectors containing the visible and hid-
den unit biases, respectively, and W is the weight matrix
that connects the two layers.

The goal in training an RBM is to maximize the like-
lihood of the training data under the model, P(v). The
actual log-likelihood gradient is difficult to compute be-
cause it involves the intractable partition function Z; how-
ever, stochastic estimates of the gradient can be made by
drawing Gibbs samples from the joint distribution P(v, h)
using the factorial conditional distributions in (5),(6).
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Where G () is the logistic sigmoid function:
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Figure 2. A 3-layer deep belief network comprised of 2
RBMs

The Gibbs sampling Markov chain can take quite a long
time to produce actual samples from the joint distribution,
so in practice the chain is started at a training example and
run for a small number of iterations. Using this estimate
of the log-likelihood gradient, we are instead minimizing a
quantity referred to as the contrastive divergence between
the training data and the model [2,5]. Contrastive diver-
gence updates for the RBM parameters are shown below:

AWZ'J' X <’Uih]‘>() — <vihj>k (8)
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Ab; o< (hy)o = (hj)k (10)

Where (-);, denotes the value of the quantity after k itera-
tions of Gibbs sampling, and for £k = 0, v; is simply the
training data and h; is a sample from (6) given the training
data. Typically, these updates are performed using multiple
training examples at a time by averaging over the updates
produced by each example. This helps to smooth the learn-
ing signal and also helps take advantage of the efficiency
of larger matrix operations. As k — oo, these updates
approach maximum likelihood learning.

2.2 Stacking RBMs

A deep belief network is formed when multiple RBMs are
stacked on top of each other as shown in Figure 2. Af-
ter training a first-level RBM using the training data, we
can perform a deterministic up-pass by setting the hidden
units to their real-valued activation probabilities using (6)
for each visible training vector. This is the same as what
is done in the up-pass in a deterministic neural network.
These deterministic hidden unit values are then used as the
visible data in a subsequent higher-level RBM, which is
also trained using contrastive divergence learning. This
RBM stacking continues until the network reaches the de-
sired depth. This greedy layer-by-layer training approach
is a useful procedure for learning a set of non-linear fea-
tures in an unsupervised manner [4], and it has been shown



hidden units

@@ @“"
OIONOls .@ @*a

conditioning units visible units

Figure 3. A conditional restricted Boltzmann machine.
The correct label unit activations are provided as part of
the visible unit data during training.

to be a beneficial pre-training procedure when followed by
discriminative backpropagation [6].

2.3 The Conditional Restricted Boltzmann Machine

The conditional restricted Boltzmann machine (CRBM) takes
the RBM a step further by adding directed connections be-
tween additional visible units, y;, and the existing visible
and hidden units, as shown in Figure 3. These additional
units can represent any type of additional information, in-
cluding visible data from the recent past. Because of this,
the CRBM is an effective generative model of time se-
quence data [11]. This fact is what motivated our use of
the CRBM to model drum patterns.

The directed connections, which are represented by weight
matrices A and B, replace the bias terms, a and b in (5),(6),
with dynamic bias terms, & and b.

= a+ Ay (11)
= b+ By (12)
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Where y is a vector containing the conditioning data. This
modified RBM models the distribution P(v,hl|y), and the
learning rules in (8)—(10) are unchanged except for the ad-
dition of the dynamic bias terms to the sampling expres-
sions. The learning rules for the conditional weight matri-
ces also have a familiar form:

AAi; o< (viyj)o — (Viyj)k 13)
ABi; o (hiyz)o — (hivj)k (14)

Note that the 7; above are simply the training values and
are not stochastically sampled in any way.

3. MODELLING AND ANALYZING DRUM
PATTERNS

3.1 Bounded Linear Units

Drum patterns are not simply a series of ones and zeros,
onset or no onset. Most drum patterns contain an appre-
ciable sonic difference between accented and unaccented
notes on every drum or cymbal, and it is these differences
which give drum patterns their character. In order to ef-
fectively model drum patterns using the CRBM, we must
modify the binary-valued visible units to be real-valued.

Bounded Linear Unit Activation with N = 20

Expected value, E[v|x]
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Figure 4. Bounded linear unit activation function

There are many options for getting real-valued visible
activations out of RBMs; in fact, it has been shown that
every distribution in the exponential family is a viable can-
didate [13]. A popular choice is the Gaussian distribution
due to its familiarity and ubiquity; however, the unbound-
edness of Gaussian samples does not translate well to the
space of dynamic levels possible within a drum pattern.

In order to model the bounded nature of playing dy-
namics, we use a modified version of the rectified linear
units (RLUs) described in [9]. RLUs are constructed from
a series of binary units with identical inputs but with fixed,
increasing bias offsets. If the bias offsets are chosen appro-
priately, the expected value and variance of the number of
active units out of these NV tied binary units with common
input x is:

E[vjz] = log(l+ %) —log(l+e”~N) (15)
Var(vlz) = &(x)—a(x—N) (16)

As can be seen in Figure 4, (15) yields a sigmoidal curve
that saturates when x > IV, bottoms out when x < 0, and
is approximately linear in between. In the linear region,
the variance is equal to one, so the value of N is chosen to
achieve the desired level of noisiness in the samples, and
the training data can be rescaled to the interval [0, N]. In
this work, we have chosen N = 20, so that a value of 20
represents the loudest possible drum strike, while zero rep-
resents the absence of a drum strike. To sample from these
bounded linear units (BLUs), instead of actually sampling
from NN binary units with stepped offsets, we approximate
their total output with:

N
Plo|z) ~ [N(E[v|x},\/ar(v|m))}o (17)

where N (+) is a normal distribution with mean and vari-
ance provided by (15) and (16), and [](Z)V snaps values
outside of the interval [0, N] to the boundaries of the in-
terval. Because these BLUs are constructed from logistic
binary units, all of the RBM learning rules from Section 2
are still valid; the only thing that changes is how we sample
from the visible BLUs.

3.2 Label Units

If bounded linear units give us a way to get drum onset
information into the network, label units are how we get
information out of the network. A standard approach to
multi-class classification with neural networks is to use a
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Figure 5. An RBM with an added group of visible label
units.

group of softmax output units, which assigns a value to
each of its units (each with input x;) based on the softmax
activation function shown in (18). This activation function
is convenient for classification because the activation val-
ues of the group sum to one, which allows the output values
to be interpreted as posterior class probabilities given the
input data.
e

= W
In the realm of RBMs and deep learning, a different ap-
proach can be used which entails providing the ground
truth class labels as part of the visible data during training.
This approach has been shown to be more effective than us-
ing a separate softmax output layer in certain cases [6], and
it indeed achieves better results for our application. Instead
of adding the label units to a separate output layer, we aug-
ment the visible layer in the top-level RBM of a deep belief
network with a group of softmax label units, as shown in
Figure 5. This allows us to train the top-level RBM us-
ing the label units as visible data, by turning on only the
correct label unit during training. Once this labeled RBM
has been trained, we can compute the posterior activation
probability under the model of each of the label units given
the data, P(I|v), using (19) and (20) (see [5]):

F(v|l) =— sz@ai — Zlog (1 + exp (:cy))) (19)
i J
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(18)

Smax (in ) X)

P(I[v) (20)

Where x;l) =bi+>, Wi Ul(l), and vl@ denotes the visible
data but with only unit [ of the label unit group activated.
This calculation is tractable due to the typically small num-

ber of label units being evaluated.

3.3 Modelling Drum Patterns

In our drum pattern analysis network, we always start with
a CRBM at the first layer. This CRBM models the current
drum beat or subdivision using one BLU visible unit per
drum or cymbal. In our experiments, we use a minimal
three-drum setup: bass drum, snare drum, and hi-hat, but
this can be expanded to work with any percussion setup.
The conditioning units, y;, of the CRBM contain drum ac-
tivations from the recent past. In our experiments, y is
fed with drum activations from the most recent two mea-
sures (or 32 subdivisions given a 4/4 time signature with
sixteenth note subdivisions).

Subsequent layers use binary visible units instead of
BLUs. Intermediate layers of the DBN can be made up of
either additional CRBMs or standard RBMs, and the final
layer must have visible label units to represent the classi-
fier output. Using an intermediate-layer CRBM allows the
layer to take into account past hidden unit activations of the
layer below it, which allows it to learn higher-level time de-
pendencies. In doing so, it increases the past time context
that the top-level layer sees, since the past hidden unit acti-
vations of a first-level CRBM have been conditioned on the
past relative to themselves. In order to make a fair compar-
ison between DBNSs that use different numbers of CRBM
layers, we must make sure that the top layer always has ac-
cess to the same amount of visible first-layer data from the
past.

In our experiments, we train the label units to detect the
current sixteenth note beat subdivision within the current
4/4 measure. In the next section, we give details on the
configuration and training of the various DBNs that we test
for this task.

4. TRAINING THE SYSTEM
4.1 Training Data

The dataset consists of 173 twelve-measure sequences com-
prising a total of 33,216 beat subdivisions, each of which
contains bass drum, snare drum, and hi-hat activations.
The data was collected using electronic Roland V-drums !,
quantized to exact sixteenth note subdivisions, and con-
verted to a subdivision-synchronous drum activation ma-
trix.

The sequences were intended to span a sizeable, but by
no means complete, collection of popular rhythmic styles.
There is a strong rock bias, with many beats featuring a
prominent back beat; however, also included are more syn-
copated styles such as funk and drum ‘n’ bass as well as the
Brazilian styles samba and bossa nova. We use a random-
ized 70/20/10 split for training, testing, and validation data,
respectively.

4.2 DBN Configurations

We test four DBN configurations. For each of the four
network architectures, we tested multiple hidden unit con-
figurations and have chosen to present only those which
performed best on the test data for each architecture. They
are as follows:

1. I-layer: Labeled-CRBM
3 visible data units + 16 visible label units, 100 hid-
den units, and 32 past subdivisions of context (96
conditioning units)

2. 2-layers: CRBM — Labeled-RBM
Each with 100 hidden units. The CRBM again has a
context of 32 subdivisions.

"'http://rolandus.com



3. 2-layers: CRBM — Labeled-CRBM
With 100 and 200 hidden units respectively. Each
CRBM has a context of 16.

4. 3-layers: CRBM — CRBM — Labeled-RBM
With 100, 200, and 100 hidden units respectively.
Both CRBMs have a context of 16 subdivisions.

4.3 DBN Training

Each non-labeled layer was trained using contrastive di-
vergence with & = 1 (CD-1) for 300 sweeps through the
training data with an update batch size of 100. The order
of the training data was randomized in order to smooth the
learning.

Top-level labeled layers were trained with the correct

visible label unit switched on and the other label units switched

off. We pre-trained each labeled layer using CD with k =
1 for 150 epochs and then k was linearly increased from 1
to 10 for an additional 150 epochs.

After pre-training each layer, we used discriminative
backpropagation to fine-tune the network by backpropa-
gating the cross-entropy label unit error to the lower lay-
ers [6]. Backpropagation was run for 400 epochs, but in
the end we used the model parameters which produced the
lowest cross-entropy validation error during training.

This type of training relies heavily on multiplying large
matrices, which can be done considerably faster using highly
data-parallel graphics processing units (GPUs). We use
Gnumpy [12], a Python module which provides Numpy-
like 2 bindings for matrix operations on Nvidia GPUs. Us-
ing an Nvidia Tesla C2050 GPU, training the single-layer
model (#1) took around 20 minutes, while the 3-layer model
(#4) took around 30 minutes. The typical split between
pre-training time and backpropagation time was around
60%/40%.

4.4 Viterbi Decoding

In addition to simply classifying each subdivision individ-
ually, we can take into account additional sequential con-
text by providing the label probabilities as posterior state
probabilities in a hidden Markov model (HMM) [10]. In
order to maximize coherence between successive beat sub-
division estimates, we assign a high probability of a tran-
sition to the next successive beat and give an equal divi-
sion of the remaining probability to other transitions. Since
our system is designed for live use, we use strictly causal
Viterbi decoding to estimate the current beat subdivision.

5. RESULTS
5.1 Independent Subdivision Classification

Here we present the classification results for beat-measure
alignment. The test data contains 16 beat subdivisions per
4/4 measure, so we use 16 separate label units in the train-
ing. We were concerned with the prevalence of half-note
symmetry in most back-beat-oriented drum patterns. For

2http://numpy.org
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Figure 6. Example posteriors subdivision probabilities
from the four models and the ground truth labels. The
columns in each matrix show the posterior probability of
each label for a particular beat subdivision.

example, distinguishing between the first quarter note and
the third quarter note of many basic rock patterns is virtu-
ally impossible without additional contextual information.
Even though this phenomenon caused the majority of clas-
sification errors, the networks seemed to do well on the
whole despite it.

Table 1 shows the classification results for each model.
The single layer model was significantly outperformed by
all multi-layer models, and adding a third layer did not
seem to provide additional benefit on our test data. Exam-
ple posterior label probabilities for each model are shown
in Figure 6.

DBN Configuration Train Test
Accuracy | Accuracy

L-CRBM 97.2 76.2

CRBM—L-RBM 94.9 80.8

CRBM—L-CRBM 91.0 83.7

CRBM—CRBM—L-RBM 89.6 81.1

Table 1. Subdivision classification accuracy for each net-
work configuration

5.2 With Viterbi Decoding

Now we present the classification results when using Viterbi
decoding. We were concerned there would be a tendency
for the high sequential state transition probability to in-
crease the number of classification errors in the presence
of half-note offset ambiguities; however, the decoding only
seemed to help classification. Strong half-note ambiguities
seemed to provide strong enough evidence for both alterna-
tives that the original independent classification decisions
were typically unaffected by the Viterbi decoding.

As shown in Figure 7, increasing the sequential tran-
sition probability increases the overall beat classification
accuracy; however, in a real-world application, one cannot
simply set this probability to one or else the decoder could
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Figure 8. Row 1: Example posterior probabilities. Row
2: Independent classifications. Row 3: Viterbi decoded
classifications. Row 4: Ground truth labels.

possibly be locked into an incorrect beat-measure align-
ment for the entire song. The decoder must also be allowed
to adjust its estimates when beats are purposely left out by
the drummer. Therefore, this parameter should be set with
the end use case in mind. Example viterbi decoding results
are shown in Figure 8.

6. DISCUSSION

Our results show the benefit of using a multi-layer neural
network that is pre-trained as a deep belief network for an-
alyzing drum patterns; however, it is likely that the actual
optimal network configuration will be highly dependent on
the diversity of the drum patterns in the dataset.

The results in Table 1 show an inverse relationship be-
tween training and test accuracy, which suggests overfit-
ting was occurring during backpropagation. Subsequent
work should focus on a more robust evaluation of the re-
sults using a larger dataset, cross-validation, and more at-
tention to regularization techniques. In addition, compari-
son with existing drum pattern analysis methods is neces-
sary.

Although, we do not objectively evaluate the use of these
models for generating drum patterns, it is important to note
that because the RBM is inherently a generative model,

these networks are especially well-suited to serve as stochas-
tic drum machines. Even a single labeled-CRBM works
well for this purpose, and turning on the label unit of the
desired subdivision during Gibbs sampling helps increase
the metric stability of the generated patterns.

This type of model has significant potential to be of use
in many music information retrieval and computer music
tasks. We plan to explore the ability of the model to dis-
criminate between rhythmic styles, discern between dif-
ferent time signatures, or to detect rthythmic transitions or
fills. We also plan to do a more in-depth evaluation of the
generative abilities of the model as well as to pursue meth-
ods which will allow interactive improvisation between hu-
man and computer performers.

Additional information as well as the dataset and code
used in this work will be made available at:
http://www.eecs.berkeley.edu/~ericb/ .
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