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ABSTRACT
We present a live drum separation system for a specific target drumset to be used as a front end in a
complete live drum understanding system. Our system decomposes drum note onsets onto spectral drum
templates by adapting techniques from non-negative matrix factorization. Multiple templates per drum are
computed using a new gamma mixture model clustering procedure to account for the variety of sounds that
can be produced by a single drum. This clustering procedure imposes an Itakura-Saito distance metric on
the cluster space. In addition, we utilize “tail” templates for each drum which greatly improve the separation
accuracy when cymbals with long decay times are present.

1. INTRO

The purpose of this work is to present the initial steps
we have made toward the development of a live drum
understanding system, which will incorporate drum-wise
source separation, low-level beat tracking, and high-level
rhythmic understanding. In this paper, we focus on the
first component of the system: live drum separation.

Source separation is an important problem in the field of
music information retrieval that attempts to isolate sound
sources (instruments, notes, sound samples, noise, etc.)
as separate signals[1]. This can greatly enhance music
analysis tasks such as genre/artist classification, beat-
tracking, lyrics synchronization, and automatic transcrip-
tion. In this paper we utilize an existing approach created
for a source separation technique called non-negative
matrix factorization (NMF) [2] to compute the contribu-
tion of individual drums to a spectrogram slice.

Our motivation for developing live drum separation tech-
niques stems from the fact that the activation (onset
time and amplitude) of individual drum events is much
more informative than non-drum-specific onset locations
when determining perceptual beat locations and classi-
fying rhythmic patterns. For example, in rock and jazz
music, the drummer typically keeps time on one of the
cymbals by playing some sort of repeating pattern (e.g.

straight eighth or quarter notes or a swung ride pattern),
while the snare and bass drum will typically accentuate
certain beats within a measure.

Approaches to feature-based classification of solo drum
onsets are covered in [3] and [4]. In [5], Paulus uses
NMF techniques to transcribe solo drums. The spectral
templates used for the drums are spectrum averages com-
puted from a large number of training samples, so they
are more generally applicable but less specific to a par-
ticular drum kit. Yoshii [6] uses an adaptive approach
to drum transcription by starting with general drum tem-
plates, matching the templates to drum onsets, and then
refining the templates to better match the input drums.

In our live drum separation system, we have the luxury
of training templates to a single target drum kit. It is
assumed that sound samples of the individual drums can
be gathered during sound check or sometime before a
performance, so we can specialize our templates to the
specific drums that will be used.

Our approach trains multiple templates per drum to ac-
count for the vast array of sound qualities that can be pro-
duced on a particular drum. For example, a snare drum
can produce a large variety of sounds depending upon
the striking velocity and whether the drum stick hits the
center, edge, or rim of the drum.
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In addition, our system incorporates the use of “tail” tem-
plates to address the problem that occurs when long-
decay percussion instruments (e.g. cymbals) overlap
with successive drum onsets, thereby degrading the qual-
ity of separation.

1.1. System Overview

Our drum separation system is comprised of four pri-
mary components: onset detection, spectrogram slice ex-
traction, drum template training, and non-negative vec-
tor decomposition (NVD). Onset detection is used to
locate significant rhythmic events to be spectrally ana-
lyzed. During the training of a particular drum, spectro-
gram slices at onset locations are clustered using a proba-
bilistic formulation of the Itakura-Saito distance[7]. The
cluster centers are then used as time-frequency templates
for each trained drum. Live drum separation is accom-
plished by locating drum events and decomposing the
spectrogram slices of each event as a non-negative mix-
ture of drum templates. A block diagram of the system
is shown in Figure 1.

Onset
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Mixture Model
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Vector
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(drum templates)
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(drum-wise audio)
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Fig. 1: System overview. The dotted connections are present
during training, while the solid connections are used during
live performance

In the following four sections, we describe the approach
used for onset detection, spectrogram slice extraction,
drum template training, and non-negative mixture de-
composition, respectively.

2. ONSET DETECTION

Our approach to onset detection is similar to that pre-
sented in [8], in that we compute our onset detection
function using the differentiated log-energy of multiple
sub-bands. We used a larger number of sub-bands (20
per channel) spaced according to the Bark scale. The
energy in the ith sub-band of the nth frame of samples,
si(n), is processed using mu-law compression as a robust

estimation of pure logarithmic compression, according
to eq. (1).

ci(n) =
log(1+µsi(n))

log(1+µ)
(1)

We use a large value of µ = 108 in the above in order
to enhance the detection of more subtle drum notes. In
order to limit the detection of spurious, non-musical on-
sets, the compressed band energies, ci(n), are smoothed
using a linear phase Hann window with a 3dB cutoff of
20Hz to produce zi(n). We time-differentiate and half-
wave rectify zi(n) to get dzi(n). To arrive at our final on-
set detection function, o(n), we take the mean of dzi(n)
across sub-bands.

To pick onset locations from the detection function we
first find the local maxima of o(n). Then, local max-
ima are labeled as onsets if they are larger than the dy-
namic threshold, Tdyn [eqs. (2–4)]. In addition, the de-
tection function must have dropped below the local dy-
namic threshold since the last detected onset. These cri-
teria were chosen with the causality requirement of our
system in mind.

We have experimented with many types of dynamic
thresholds. Typical ways to compute a dynamic thresh-
old are covered in [9]. The dynamic threshold we utilize
here is shown in eq. (2), where Pi(n) represents the ith
percentile of the set

~O(n) = {o(n),o(n−1), . . . ,o(n−N)},

where N is chosen so that ~O(n) contains 1 second worth
of detection function values.

T1(n) = 1.5(P75(n)−P25(n))+P50(n)+0.05 (2)

However, due to causality requirements, we also needed
a way to quickly increase the threshold after a passage of
silence. This is accomplished using a percentage of the
maximum value, P100(n), of ~O(n) as shown in eq. (3).

T2(n) = 0.1P100(n) (3)

The final dynamic threshold is calculated as the power
mean between T1(n) and T2(n) [eq. (4)]. The power mean
is chosen to simulate a softened maximum between the
two values.

Tdyn(n) =
(

T1(n)p +T2(n)p

2

)1/p

(4)
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We use a value of p = 2, which results in a fairly soft
maximum. As p→ ∞, the power mean approaches the
true maximum.

An overview of the complete onset detection system is
shown in Figure 2.
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Fig. 2: Diagram of onset detection system. The audio sample
rate is 44.1kHz

3. EXTRACTION OF SPECTROGRAM SLICES

The primary feature we use to perform drum separation
is a spectrogram slice that is local to a detected onset
event. In previous work employing non-negative ma-
trix factorization (NMF), the features used in drum sep-
aration are simply the local spectra which contain no
time-based transient information [5]. Like in Yoshii’s
template-based approach to drum transcription [6], we
use a number of adjacent spectral frames to detect the
presence of drums. This approach allows us to capture
characteristics of the attack and decay of a particular
drum.

The short-time spectra that make up a spectrogram slice
are extracted using a 23ms Hann window with hopsize
5.8ms. We then compute the energy of the FFT com-
ponents of this window of samples. This energy spec-
trum is then dimensionality-reduced by summing the en-
ergy into 40 sub-bands per channel spaced according to
the Bark scale. In [10], we have shown that NMF used
for drum source separation can be sped up significantly
using this sub-band-based, dimensionality-reduction ap-
proach with no loss of separation quality.

A spectrogram slice is comprised of 100ms worth of ad-
jacent spectral frames (about 17 frames). The window
of frames used in the slice begins about 33ms before the
detected onset and ends 67ms after the onset. This offset

helps to ensure that the window contains the entire at-
tack of the onset. In addition, during training, we extract
a further 100ms of spectrum frames, after the initial slice,
to be used in computing “tail” templates. When perform-
ing non-negative vector decomposition (NVD) on input
spectrogram slices, these tail templates serve as “decoys”
to prevent the long decay of a previous drum onset (e.g.
cymbal crash) from incorrectly showing up in the drum
activations of the current onset. These tail templates ac-
count for the intrusion of these long decays into the cur-
rent spectrogram slice, and their activations are ignored
in the final drum separation.

The head and tail spectrogram slices are both smoothed
across frames using a 29ms Hann window and downsam-
pled by a factor of 2 in order to allow the slices to be
more robust to variations in microtiming. Finally, the
square root is taken to move the data from the energy do-
main to the magnitude domain. During training, these
head and tail slices are fed to the drum template training
stage covered in the following section. During live per-
formance, only the head slices are used as input to the
drum separation covered in Section 5.

4. TRAINING DRUM TEMPLATES

To model the time-frequency characteristics of individual
drums given a target drum set and specific microphone
placements, we cluster the spectrogram slices extracted
from the training data for each drum. It is assumed that
we have access to isolated, single-drum samples for each
drum as is typically the case during a pre-performance
sound check. Once we have accumulated a training set of
spectrogram slices (both head and tail for each detected
onset) for a particular drum, we follow the agglomerative
clustering procedure outlined in this section to arrive at
a small number of spectrogram templates that compactly
describe the range of sounds that can be produced by the
drum. The head and tail slices for each drum are clus-
tered separately to produce separate sets of templates.

4.1. Clustering with the Itakura-Saito Diver-
gence
The speech recognition community has made frequent
use of Gaussian Mixture Models (GMMs) for model-
ing speaker-specific data[11][12]. Clustering data us-
ing GMMs enforces a squared Euclidean distance mea-
sure when determining the cluster membership of indi-
vidual observations. As shown by Banerjee [13], other
members of the Bregman divergence family can be used
for clustering by using mixture models built from other
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exponential-family priors. An important Bregman diver-
gence to the speech and music community is the Itakura-
Saito distance (IS distance), which is frequently used
as a measure of the perceptual distance between audio
spectra[7][14]. In order to perform soft clustering using
the IS distance we can use a mixture model composed of
exponential distributions[13], or more generally, gamma
distributions.

4.2. The Gamma Distribution
The probability density function of the univariate gamma
distribution can be written as follows:

p(y|λ ,k) = yk−1 λ ke−λy

Γ(k)
, y≥ 0; λ ,k > 0 (5)

E[y] = µ = k/λ (6)

Where the mean is shown in eq. (6). The gamma distri-
bution generalizes the Erlang distribution (which models
the sum of k iid exponential random variables) to contin-
uous k > 0. Figure 3 shows the gamma distribution with
constant mean for various values of shape parameter k.
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Fig. 3: The gamma distribution for various values of k and
constant mean.

As shown in [13], we can write the gamma distribution
in its Bregman divergence form as shown in eq. (7). The
Bregman divergence inside of the exponential, dIS(y,µ),
is the IS distance.

p(y|λ ,k) = exp(−k dIS(y,µ))b0(y) (7)
dIS(y,µ) = y

µ − log y
µ −1 (8)

b0(y) =
e−kkky−1

Γ(k)
, µ = k/λ (9)

To model multidimensional data, we construct a mul-
tivariate gamma distribution from independent gamma
distributions:

p(~y|~λ ,k) =
M

∏
i=1

λ k
i yk−1

i e−λiyi

Γ(k)
(10)

=
|~λ |k|~y|k−1 exp(−~λ ·~y)

(Γ(k))M (11)

E[~y] =~µ = k/~λ (12)

where | · | denotes the product of the elements in a vector,
~a ·~b denotes a dot product between vectors, and division
involving vectors is performed element-wise.

4.3. The Gamma Mixture Model
Our Gamma Mixture Model (ΓMM) has the following

distribution for observations, ~yn:

p(~yn|θ) =
K

∑
l=1

πlp(~yn|~λl ,k) (13)

πl = p(xn = l) (14)

where θ = {~λl ,πl}K
l=1, ~yn ∈ RM , and xn is a hidden vari-

able that denotes which mixture component ~yn was gen-
erated from.
In order to learn the ΓMM parameters, θ , from a set of
training data, Y = {~yn}N

n=1, we employ the Expectation-
Maximization (EM) algorithm[15]. Because maximizing
the log-likelihood of the parameters, logp(Y|θ), is in-
tractable, instead the EM algorithm iteratively optimizes
an auxiliary function:

Q(θ |θ (t)) = E
[
logp(Y,X|θ)

∣∣∣Y,θ (t)
]

(15)

where θ (t) are the current parameters at iteration t, θ are
the parameters to be optimized during the current iter-
ation, and X = {xn}N

n=1. For our ΓMM, we eventually
arrive at the simplified expression:

Q(θ |θ (t))= (16)

N∗l
K

∑
l=1

{
logπl + k log |~λl |− k

(
~λl · 1

~λl
∗

)}
+(k−1)

N

∑
n=1

log |~yn|−NM logΓ(k)

where

N∗l =
N

∑
n=1

p(xn = l|~yn,θ (t)) (17)

~λl
∗

=
kN∗l

∑
N
n=1 ~ynp(xn = l|~yn,θ (t))

(18)
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Eqs. (17,18) rely on the posterior p(xn = l|~yn,θ (t)) which
can be calculated using Bayes’ rule:

p(xn = l|~yn,θ (t)) =
p(~yn|xn = l,θ (t))p(xn = l|θ (t))

p(~yn|θ (t))
(19)

=
πl exp(−k dIS(~yn, ~µl))

∑
K
j=1 π j exp(−k dIS(~yn, ~µ j))

(20)

=
πl |~λl |k exp(−~λl ·~yn)

∑
K
j=1 π j|~λ j|k exp(−~λ j ·~yn)

(21)

where ~µl = k/~λl . Notice that in eq. (20), the posterior
(or cluster membership probabilities) can be viewed as a
weighted sum of the IS distance (rescaled by the expo-
nential function) between an observation and the cluster
mean. Banerjee shows that clustering in this way aims
to minimize the expected IS distance between a cluster
mean and the cluster members[13].

Now we can compute updated optimal values of the pa-
rameters using Q(θ |θ (t)), which is maximized with the
following parameter values:

πl =
N∗l
N

, ~λl = ~λl
∗

(22)

with N∗l and ~λl
∗

from eqs. (17,18).

We continue to alternate between updating the poste-
rior using eq. (21) and updating the parameters using
eqs. (17,18,22) until Q(θ |θ (t)) converges.

4.4. Agglomerative Clustering with Gamma
Mixture Models
The ΓMM training procedure covered in 4.3 relies on a
fixed number (K) of mixture components or clusters. In
order to choose a value of K that complements the train-
ing data, we use the agglomerative clustering approach
in [16]. This approach starts with an initial maximum
value of K = K0 and iteratively merges similar clusters
until we are left with a single cluster (K = 1).

The agglomerative procedure begins by initializing the
K0 cluster means, ~µl = k/~λl , to be equal to randomly
chosen data points from the training set, Y. The initial
cluster prior probabilities, πl , are uniformly initialized.

Then the parameters are iteratively optimized for this
value of K until convergence. Upon convergence, we
merge the two most similar clusters, decrement K, and
again update the parameters until convergence. The sim-
ilarity of two clusters (l,m) is computed using the fol-
lowing distance function:

D(l,m) = Q(θ ∗|θ (t))−Q(θ ∗(l,m)|θ
(t)) (23)

where θ ∗ is the set of parameters that optimizes
Q(θ |θ (t)), and θ ∗(l,m) is the optimal set of parameters with
the restriction that:

~µl
∗ = ~µm

∗ =
πl~µl +πm ~µm

πl +πm
(24)

Using eqs. (12,16,17,18,24) along with the convergence
assumption of θ ∗ = θ (t), eq. (23) simplifies to:

D(l,m) =

k
{
(N∗l +N∗m)

[
log
∣∣∣N∗l
~λl

+ N∗m
~λm

∣∣∣−M log(N∗l +N∗m)
]}

(25)

+N∗l log |~λl |+N∗m log |~λm|

The two clusters that minimize D(l,m) are deemed the
most similar and are merged into a single cluster with
parameters:

~µl,m =
πl~µl +πm ~µm

πl +πm
, πl,m = πl +πm (26)

However, before merging, the parameter set, θ ∗, for the
current value of K is saved along with a measure of how
efficiently the parameters describe the training data. As
in [16], we use the Minimum Description Length (MDL)
introduced by Rissanen[17].

MDL(K,θ) =

−
N

∑
n=1

log

(
K

∑
l=1

p(~yn|~λl)πl

)
+ 1

2 L log(NM) (27)

with L equal to the number of free parameters.

L = KM+(K−1) (28)

For our ΓMM, eq. (27) simplifies to:

MDL(K,θ) = (29)

−
N

∑
n=1

[
log

(
K

∑
l=1

πl |~λl |k exp
(
−~λl ·~yn

))]

−
N

∑
n=1

[(k−1) log |~yn|]+NM logΓ(k)+ 1
2 L log(NM)

So for each K, we run the EM algorithm until Q(θ |θ (t))
converges, then save the parameters, θ ∗, along with
MDL(K,θ ∗). We merge the two most similar clusters
using eqs. (25,26), and then repeat the EM algorithm for
the new smaller K. Once we reach K = 1, we choose
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the K and corresponding set of parameters with the min-
imum MDL.

We then compute the mean vector of each cluster, ~µl ,
from the winning cluster parameters, ~λl , using eq. (12).
These mean vectors are used as our drum templates.

5. DRUM SEPARATION
Now that we have trained a number of head and tail tem-
plates for each drum, we can compute the activations of
these templates from live drum audio input. In order to
make the amplitude of each template activation mean-
ingful, we normalize the head templates so that all of the
templates for a particular drum have the same approxi-
mate loudness. To do this, we normalize the head tem-
plates for a single drum to have the same energy as the
template with the maximum energy for that drum. No
normalization is required for the tail templates, since as
you will see, we discard their activations.

5.1. Non-negative matrix factorization
Using the tail templates and normalized head templates,
we can decompose live drum onsets as non-negative lin-
ear combinations of the templates. The activations of all
the head templates corresponding to a single drum are
summed to get the activation of that drum, and the acti-
vations of tail templates are discarded. To determine the
activation of each template for a particular input spec-
trum, we employ multiplicative algorithms used in non-
negative matrix factorization (NMF)[2]. NMF poses the
problem:

min
W,H

D(X ||WH), W ≥ 0,H ≥ 0 (30)

X ∈ RM×F , W ∈ RM×T , H ∈ RT×F (31)

where the matrix inequality constraint applies to every
element, and X is the matrix to be factorized. D(X ||WH)
is an associated cost function that measures the error be-
tween X and its factorization WH. Typical NMF cost
functions include Euclidean distance, KL divergence,
and IS distance [14]. These cost functions all belong to
the family of Bregman divergences and, additionally, be-
long to the subset of the Bregman divergence called the
Beta divergence[18], shown below.

dβ (x||y) =


x
y − log x

y −1, β = 0
x(log x

y + y− x), β = 1
xβ+(β−1)yβ−βxyβ−1

β (β−1) , β ∈ R\{0,1}
(32)

The Eucliden distance, KL divergence, and IS distance
are Beta divergences with β = 2, 1, and 0, respectively.

In order to compute the Beta divergence between two
matrices, we simply sum the Beta divergence between
corresponding elements in the matrices.

5.2. Non-negative vector decomposition
Our drum separation task does not carry out full NMF on
the input spectrogram slices. Because we have already
trained drum templates, we have already determined the
matrix W , with the templates contained in its columns.
Because W is not being optimized, the problem in (30)
decouples into F independent optimization problems

min
~hi

D(~xi||W~hi), ~hi ≥ 0 (33)

~xi ∈ RM, W ∈ RM×T , ~hi ∈ RT (34)

where ~xi and ~hi are the ith columns of X and H, respec-
tively.

To pursue an optimal solution to (33), we use multiplica-
tive, gradient-based updates first introduced by Lee and
Seung [2] for Euclidean and KL divergence cost func-
tions and later generalized to Beta divergences [18][19].

~hi← ~hi.
W T ((W~hi)

.β−2.~xi)

W T (W~hi).β−1
(35)

where dotted operations and division are carried out
element-wise. In order to pursue an optimal mixture of
templates in terms of the IS distance, we can iterate on
the above update with β = 0; however, dβ (x||y) is not
convex in terms of y for β = 0, so there is the possibility
of convergence to local minima. For 1≤ β ≤ 2, dβ (x||y)
is convex in y. Bertin et al.[20] use this fact to design a
“tempering” algorithm which begins running the updates
with β in the convex range and then slowly reduces β to
0. This approach is shown to help avoid local minima
and reduce the final converged cost.

6. RESULTS

6.1. Test Setup

In order to generate audio signals with solid ground truth
information, we created our test data using Roland elec-
tronic V-drums[21] to record MIDI data for each drum
performance. The MIDI data was then used to gen-
erate a two-channel, 44.1kHz, 24-bit audio version of
the performance using Toontrack’s high-quality, multi-
sampled, multi-microphone drum sampling engine Su-
perior Drummer 2.0 [22]. The MIDI data generated by
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the V-drums includes separate MIDI notes for snare and
snare rim, hi-hat bow and edge (both open and closed),
bass drum, and ride cymbal bow and bell. The test audio
signals were generated with each drum panned to corre-
spond to its physical location within the stereo field. No
compression or filtering was done on any of the drum
samples.

The ΓMM training of multiple templates per drum is de-
signed to account for the continuous range of sounds that
can be produced by an acoustic drum, and we attempt
to simulate such a continuous range of sounds using a
highly multi-sampled kit. The use of a multi-sampled
drum library limits our test data to a finite range of drum
sounds, but the sheer number of samples used (up to 12
per velocity level per drum) allowed us to produce data
that is a faithful simulation of actual performances on an
acoustic kit.

The training data is divided into 5 distinct drum classes:
bass drum, snare drum, closed hi-hat, open hi-hat, and
ride cymbal. For each class, we train on notes played at
a variety of dynamic levels and articulations (e.g. hi-hat
bow vs. edge). The number of training examples for each
drum class is shown in Table 1.

The drum templates were trained with gamma shape pa-
rameter k = 2 for head templates and k = 1 for tail tem-
plates. Larger values of k tend to produce a larger num-
ber of clusters, and we decided that a smaller number of
tail templates was reasonable for our purposes. We test
separation quality for a few different training configura-
tions. The parameters we varied during training were the
initial number of head clusters per drum, K0,H , and the
initial number of tail clusters per drums, K0,T .

First, we test using the optimal number of clusters deter-
mined by the agglomerative clustering process, with the
initial number of clusters equal to the number of training
observations (K0,H = K0,T = N). The optimal number of
templates for each drum class, K∗H ,K

∗
T , are shown in Ta-

ble 1. To test the influence of using multiple templates
per drum, we also test with the number of head and/or tail
templates limited to one per drum (K0,H = 1, K0,T = 1).
With a single cluster, the optimal template is simply the
mean of all of the training data. To test the benefit of the
tail templates, we also run the tests without the use of tail
templates (K0,T = 0).

For the NVD drum separation, the best results were ob-
tained using the updates from eq. (35) with β = 0, which
corresponds to the Itakura-Saito distance; so this is the

Drum Class Bass Snare Hi-hat Ride
Open Closed

Training Notes (N) 40 84 74 52 55
Head Templates (K∗H ) 3 4 3 2 2
Tail Templates (K∗T ) 2 4 3 2 2

Table 1: Number of training notes per drum class and optimal
number of head and tail templates.

approach we used in our test system. We found no prac-
tical benefit to using the tempering algorithm described
in 5.2, where β is gradually reduced to its target value.

We implemented all algorithms in Python [23] with
Scipy [24]. Spectrogram slice extraction and NVD
could easily be performed in real-time. The agglom-
erative training of multiple spectral templates took be-
tween 2 and 20 seconds per drum depending on the num-
ber of training strikes and initial clusters. The use of
optimized parallel implementations of these algorithms
would likely allow training to be carried out virtually in-
stantaneously.

6.2. Test Data

A total of 10 drum performances were recorded for our
test data, containing a total of 2922 drum notes spaced
over about 10 minutes of audio. The tempo of the drum
tracks varies between 75 and 160 beats per minute. Ta-
ble 2 shows the occurrences of each drum class within
each track. The performed rhythms have a rock music
bias with a fair amount of syncopation. Many of the per-
formances include 16th note cymbal patterns, open hi-
hats, or ghosted snare hits. Track 4 is the lone track with
a jazz/swing feel. Any notes with velocity below 40 were
discarded from the MIDI tracks due to their limited au-
dibility.

Track Tempo Bass Snare Hi-hat Ride Total
Open Closed

1 80 120 112 0 237 0 469
2 80 84 112 0 0 162 358
3 80 68 64 90 0 0 222
4 140 31 36 1 5 191 264
5 100 107 32 16 48 0 203
6 75 88 48 10 338 0 484
7 90 51 210 0 47 0 308
8 160 38 41 0 128 0 207
9 85 62 36 0 9 42 149
10 85 52 40 1 20 145 258

Total - 701 731 118 832 540 2922

Table 2: Number of ground truth drum notes by track.
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For each test audio track and configuration of training pa-
rameters, we compute the activation of each drum class
at each detected onset location using the NVD procedure
outlined in Section 5. These drum activations are stored
in a matrix where each row contains the activations as-
sociated with a single drum class and the columns corre-
spond to audio frames. Example drum activation matri-
ces are shown in Figure 4.

Ground truth drum notes were defined by the Note On
events in the MIDI files used to generate the audio for
each track. To obtain a ground truth “drum activation
matrix”, the time of each event was quantized to the
frame hop size, and the corresponding velocity values
were scaled to the interval [0,1].

From these drum activation matrices, we compute “onset
arrays” by summing the activation matrices across rows
then setting any positive values to one. This gives us
arrays containing binary values indicating the existence
of an onset at the corresponding frame.

Bass

Snare

HH(c)

HH(o)

Ride

Drum Separation for K0,H = 1, K0,T = 0

Bass

Snare

HH(c)

HH(o)

Ride

Drum Separation for K0,H = N, K0,T = N

Bass

Snare

HH(c)

HH(o)

Ride

Ground Truth MIDI Activations

Fig. 4: Drum activation matrices for a portion of Track 1 (two
template configurations with ground truth on bottom).

6.3. Onset Detection Accuracy
Because the onset detector chooses which spectrogram
slices to analyze, its accuracy greatly influences the effi-
cacy of the overall system. We evaluated onset detection

accuracy using precision and recall rates:

Precision =

(
# correctly detected onsets

# detected onsets

)
(36)

Recall =

(
# correctly detected onsets

# actual onsets

)
(37)

To count correctly detected onsets, we iterated through
the ground truth onset array and attempted to match on-
sets in the test onset array. If the difference between a
detected onset time and an actual onset time was within
4 frames (roughly 23ms), it was counted as correct. The
onset detection results are shown in Table 3. The over-
all precision is very high indicating that a more sensitive
threshold would most likely yield improved accuracy re-
sults. Tracks 6, 7, and 8 contain a significant number of
16th notes played at low volume or high tempo which
explains their lower recall rates.

Track Correct Detected Total Recall Precision
1 305 307 315 96.8 99.3
2 227 227 267 85.0 100
3 136 136 137 99.3 100
4 228 228 255 89.4 100
5 158 158 188 84.0 100
6 327 327 413 79.2 100
7 195 196 278 70.1 99.5
8 122 122 168 72.6 100
9 126 126 134 94.0 100
10 224 224 251 89.2 100

Total 2048 2051 2406 85.1 99.9

Table 3: Onset detection accuracy

6.4. Separation Quality

To compare the activation amplitude of correctly
matched drum onsets, we used cosine similarity, which is
basically a normalized cross-correlation between vectors
containing the drum activation amplitudes of matching
onsets. It also represents the cosine of the angle between
the two vectors.

Scos(~x,~y) =
~x ·~y
‖~x‖‖~y‖

(38)

where ‖ · ‖ indicates the 2-norm.

We computed the cosine similarity between matching on-
sets for each drum class. We average (weighted by num-
ber of onsets) the cosine similarity results across drums
and tracks to get an overall amplitude similarity for each
configuration of training parameters. These results are

AES 45TH INTERNATIONAL CONFERENCE, Helsinki, Finland, 2012 March 1–4
Page 8 of 10



Battenberg et al. Live Drum Separation Using Probabilistic Spectral Clustering

shown in Figure 5. These results show an apparent ad-
vantage in amplitude quality when using more than one
head template per drum (K0,H = N); however, the high-
est average cosine similarity is achieved with a single tail
template.

K0,H = 1
K0,T = 0

K0,H = N
K0,T = 0

K0,H = 1
K0,T = 1

K0,H = N
K0,T = 1

K0,H = N
K0,T = N

Initial number of clusters for head and tail templates

0.952

0.954

0.956

0.958

0.960

0.962

0.964

Cosine Similarity of Note Amplitudes

Fig. 5: Average cosine similarity of true positive note ampli-
tudes for different numbers of initial clusters.

To measure the amplitudinal significance of false drum
activations, we collected all drum activations in the test
matrix of amplitude greater than 0.05 that did not have a
matching ground truth activation greater than 0.05 in the
same drum class. These “false activations” were counted
and their amplitudes were summed. The results for each
template configuration are shown in Figure 6. It is clear
that using at least one tail template per drum produces
significantly better results. Also, using more than one
head template seems to be of significant benefit as well.

To get a sense for what types of false activations were be-
ing added, we present the track-wise contribution to the
sum of false amplitudes for each template configuration
in Figure 7. Any contribution less than 10% of the total
was lumped into the “Other” category.

The only drum track that doesn’t seem to significantly
improve with the inclusion of tail templates or additional
head templates is Track 3. This performance features a
prominent and loudly played open hi-hat which was fre-
quently interpreted by the system as a mixture of differ-
ent cymbals. Without the use of tail templates, all three
cymbal classes (open and closed hi-hat and ride cymbal)
are present. When including tail templates, each open
hi-hat is interpreted as a combination of open and closed
hi-hats, which is not necessarily a regrettable interpreta-
tion, since they are notes from the same cymbal and –

K0,H = 1
K0,T = 0

K0,H = N
K0,T = 0

K0,H = 1
K0,T = 1

K0,H = N
K0,T = 1

K0,H = N
K0,T = N

Initial number of clusters for head and tail templates

0

500

1000

1500

2000

2500
Significance of False Activations

Total False Notes
Sum of False Amplitudes

Fig. 6: The total number of false positive notes and the sum of
the corresponding activations for various template configura-
tions.

with the exception of decay time – possess very similar
timbral characteristics. A simple fix to this interpreta-
tion would be to assume the impossibility of simultane-
ous open and closed hi-hat notes from the same cymbal
and zero out the least likely activation.

Without tail templates, the separation results for Track 1
include many incorrect ride cymbal activations during
what should be closed hi-hat activations. It seems that
the ride cymbal template is used to explain the spectral
influence of the decaying remnants of previous drum on-
sets. Track 6 suffers the same phenomenon; without tail
templates, the decomposition of its quick 16th note hi-hat
pattern is rife with ride cymbal activations and sprinkled
with open hi-hat. Track 8 is another victim of similar
unwarranted ride cymbal activations.

For additional plots and audio examples, we refer
the reader to: http://www.eecs.berkeley.edu/~ericb/
separation.html

6.5. Closing Words
The results we have presented suggest that the non-
negative decomposition of drum onsets onto spectral
templates can be greatly improved by the use of at least
one tail template per drum class. In addition, using mul-
tiple head templates per drum decreases false activations
and improves amplitude quality in correct activations. To
determine these multiple drum templates, we have pro-
posed a gamma mixture model, a probabilistic agglomer-
ative clustering approach that takes the perceptual spec-
tral similarity of training data into account and does not
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K0,H = 1
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K0,T = 0
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K0,T = 1

K0,H = N
K0,T = 1

K0,H = N
K0,T = N

Initial number of clusters for head and tail templates

0

100

200

300

400

500
Contribution of Each Beat to False Amplitude Sum

Beat1
Beat3
Beat6
Beat8
Others

Fig. 7: The contribution of each track to the overall sum of
false amplitudes. Tracks that made up less than 10% of the
total are lumped into “Others”.

rely on the computationally expensive and possibly un-
stable covariance calculation required by Gaussian mix-
ture models.
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