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Speech Interfaces: A New/Old Input Paradigm

= Speakingis human

= Speed: speak 150 wpm vs type 40 wpm
= Hands-free

= Skip the confusing menus

= Small footprint

= The huge difference between 95% vs 99% accuracy
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The Deep Learning Bet

= SVAIL is an Al lab, not a speech lab. M I I
= Instead of more domain expertise...

Silicon Valley Artificial Intelligence Lab

= Scale the model, scale the data
= -> |mproved performance.

= -> Superhuman Chinese speech recognition
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The Evolution of Speech Recognition Systems
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The Evolution of Speech Recognition Systems

Deep Speech
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= Other end-to-end approaches:

= e.g., Attention
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Deep Speech 2
Deep Speech 1 to Deep Speech 2 b =P
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Batch Normalization For RNNs

A A A
: Batch Norm
= Sequence-wise Batch Norm on < 5 } 3 D
upward connections NG N ) .
= More effective in deeper networks
= Speeds up training 50
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= Improves test accuracy 2 )
W) Wit
U 40t MM"W‘\ W) ’/\‘ ;
5 W“MW BN
1-Recurrent
30t No BN Layer
7-Recurrent
20+ BN Layers
0.5 1 15 2 25 3

Baidu Research

Silicon Valley Al Lab Iterations (1 05) Eric Battenberg | ICML2016 | 7



Scaling Up Deep Speech 2

= Tens of exaflops required to train model
» Cluster with 8 TitanX GPUs per node

= Partition minibatch across GPUs

= Synchronous SGD
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Scaling Up Deep Speech 2

= Custom All-Reduce code

» 4x-21x speedup over OpenMPl's
» Fast GPU CTC (Warp-CTC)

» Reduced training time by 10%-20%

= Fastest available kernels

Infiniband Network

< >

= Overall, sustained 45% peak
performance on each node.
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English Results
Read Speech [English]
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English Results ,
Accented Speech - VoxForge [English]
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Deep Speech 2
English

Porting to Mandarin

| |ncrease Softmax Size:
= from 29 to ~6000

= Feedin Mandarin data

= Tweak some hyperparameters
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Mandarin Results

Deep Speech 2 vs. Humans [Mandarin]
12
= Mandarin training data:

9.7
= 9400 hours N
= 11 million utterances 8
= More diverse than English data ;5) 6 5.7
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To Production-Ready Models Deep Speech 2
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Lookahead Convolutions

= Some future context is useful. Deep Speech 2

= Difficult to force network to delay predictions. ‘Forward-Only
Softmax

= We use 1D convolution after recurrent layers

. . . e . Fully Connected
= Within 5% relative performance of bidirectional models
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Research to Deployment

Deep Speech 2 is now in production!

Baidu Silicon Valley Al Lab + Baidu Speech Technology Group

Deployed! /\

@
L,

From research idea to deployed product in 2 years.

Combined efforts of 69 researchers and engineers
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Conclusion

= The story of Deep Speech 2

= End-to-end speech recognition
= Scaled up
= Ported to Mandarin

« Deployed to production Silicon Valley Artificial Intelligence Lab

= Deep Speech 3, coming to a conterence near you in 2017!
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