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MACHINE LISTENING

o Speech processing

e Speech processing makes up the vast majority of funded
machine listening research.

o Just as there’s more to Computer Vision than OCR, there’s
more to machine listening than speech recognition!

o Audio content analysis

e Audio fingerprinting (e.g. Shazam, Gracenote)
o Audio classification (music, speech, noise, laughter, cheering)

» Audio event detection (new song, channel change, hotword)

o Content-based Music Information Retrieval (MIR)
e Today’s topic




GETTING COMPUTERS TO
“LISTEN” TO MUSIC

o Not trying to get computers to “listen” for enjoyment.

o More accurate: Analyzing music with computers.

o What kind of information to get out of the analysis?

What instruments are playing?
What is the mood?

How fast/slow 1s it (tempo)?
What does the singer sound like?

How can I play this song on the guitar/drums?

Ben Harper James Brown




CONTENT-BASED MUSIC INFORMATION
RETRIEVAL

RELAX happy calm CHILLOUT dreamy
JUST WOKE UP optimistic

o Many tasks:

» Genre, mood classification, auto-tagging

» Beat tracking, tempo detection
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TALK SUMMARY

o Introduction to Music Information Retrieval

e Some common techniques

» Exciting new research directions
o Live Drum Understanding

e Drum detection/transcription

e Drum pattern analysis
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QUICK LESSON: THE SPECTROGRAM

o The spectrogram: Very common feature used in audio
analysis.

o Time-frequency representation of audio.

o Take FFT of adjacent frames of audio samples, put them in a
matrix.

o Each column shows frequency content at a particular time.

Frequency




GENRE/MOOD CLASSIFICATION:
TYPICAL APPROACHES

o Typical approach:

o Extract a bunch of hand-designed features describing small
windows of the signal (e.g., spectral centroid, kurtosis,
harmonicity, percussiveness, MFCCs, 100’s more...).

e Train a GMM or SVM to predict genre/mood/tags by either:
o Summarizing a song using mean/variance of each feature
o Log-likelihood sum across frames (GMM) or frame-wise voting (SVM)
o Pros:
o Works fairly well, was state of the art for a while.

e Well understood models, implementations widely available.

o Cons:

» Bag-of-frames style approach lacks ability to describe rhythm and
temporal dynamics.

o Getting further improvements requires hand designing more
features.




LEARNING FEATURES:
NEURAL NETWORKS

Sigmoid non-linearity

Logistic (Sigmoid) Activation

Each layer computes a non-linear transformation of 1.0 '

the previous layer.

e Linear transformation (weight matrices)

e+ non-linearity (e.g. sigmoid [0 ])

« h=0W,v), 0= 0(W,h) 0.0 ===
Train to minimize output error.
Each hidden layer can be thought of as a set of output
features. layer

Train using backpropagation.

e
Iterative steps: g
* Compute activations %’ hlldden
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e Compute output error o
. L
e Backprop. error signal PV —
e Compute gradients
o Update all weights. O visible
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e More compute
e More data

e A few new tricks...
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DEEP NEURAL NETWORKS

o Deep Neural Networks Ci:;%‘:t @ @
o Millions to billions of parameters NS v a o
e Many layers of “features” ><i>€g [ 4

» Achieving state of the art hidden |

! ' 2\)/ \@)
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AUTOENCODERS AND
UNSUPERVISED FEATURE LEARNING

o Many ways to learn features in an Autoencoder:
Train to reconstruct input

unsupervised way:

o Autoencoders — train a network to
reconstruct the input

» Restricted Boltzmann Machine (RBM)
[Hinton, 2006]

* Denoising Autoencoders [Vincent, 2008]

e Sparse Autoencoders

o Clustering — K-Means, mixture models,
etc.

o Sparse Coding — learn overcomplete
dictionary of features with sparsity
constraint




GENRE/MOOD CLASSIFICATION:
NEWER APPROACHES

o Newer approaches to feature extraction:

o Learn spectral features using Restricted Boltzmann Machines
(RBMs) and Deep Neural Networks (DNN) [Hamel, 2010] — good

genre performance.

o Learn sparse features using Predictive Sparse Decomposition
(PSD) [Henaff, 2011] — good genre performance

o Learn beat-synchronous rhythm and timbre features with RBMs
and DNNs [Schmidt, 2013] — improved mood performance

e Tune multi-layer wavelet features called Deep Scattering
Spectrum [Anden, 2013]* - state-of-the-art genre performance

o Pros:

e Hand-designing individual features is not required.

e Computers can learn complex high-order features that humans
cannot hand code.

o Further work:

e More work on incorporating context, rhythm, and temporal
dynamics into feature learning

* Current state-of-the art on GTZAN genre dataset

Some learned
frequency features
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Audio Signal

ONSET DETECTION

o Onset detection is important for music
transcription, beat tracking, tempo detection, and
rhythm summarization.

o Describing an onset:

e Transient

o Short interval when music signal evolves unpredictably.

o Attack
o Amplitude envelope increasing. attack Onset Envelope
e Decay

o Amplitude envelope decreasing.
e Onset

o Point in time chosen to represent beginning of transient.

o Onset detection can be hard for certain i
instruments with ambiguous attacks or when a e
note changes without a new attack (legato).

transient

from (Bello, 2005)




ONSET DETECTION: TYPICAL APPROACHES

o Computing an Onset Detection Function (ODF):
e Derivative of energy envelope
» Derivative of band-wise log-energies [Klapuri, 2006]

 Complex spectral domain (difference with predictions of phase
and magnitude) [Bello, 2004]

o Choosing onsets using the ODF:
o Peak pick local maxima above a dynamic threshold [Bello, 2005].
o Pros:

e Simple to implement.
 Works fairly well (60-80% accurate)

o Cons
e Lots of hand tuning of thresholds

* No machine learning




RECURRENT NEURAL NETWORKS

o Non-linear sequence model
o Hidden units have connections to previous time step

o Unlike HMMs, can model long-term dependencies using
distributed hidden state.

o Recent developments (+ more compute) have made them much
more feasible to train.

Standard Recurrent Neural Network
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from [Sutskever, 2013]




TRAINING AN RNN ON WIKIPEDIA

o Train RNN to predict next character (not word)

o Multiplicative RNN [Sutskever, 2013]
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o Text generation demo: http:/www.cs.toronto.edu/~ilya/rnn.html

o The machine learning meetup in San Francisco is considered enormously
emphasised. While as a consequence of these messages are allocated in the
environment to see the ideas and pollentium changes possible with the
Machinese gamma integrals increase, then the prefix is absent by a variety of

fresh deeperwater or matter level on 2 and 14, yet the...




ONSET DETECTION: STATE-OF-THE-ART

o Using Recurrent Neural Networks (RNN) [Eyben, 2010],
[Bock, 2012]
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o RNN output trained to predict onset locations.
o 80-90% accurate

o Can improve with more labeled training data, or possibly e
more unsupervised training.




OTHER EXAMPLES OF RNNS IN MUSIC

o Examples:
» Blues improvisation (with LSTM RNNs) [Eck, 2002]
» Polyphonic piano note transcription [Bock, 2012]

o C(lassical music generation and transcription [Boulanger-
Lewandowski, 2012]

o Other distributed-state sequence models include:

 Recurrent Temporal Restricted Boltzmann Machine
[Sutskever, 2013]

e Conditional Restricted Boltzmann Machine [Taylor, 2011]

o Used in drum pattern analysis later.

o RNNs are a promising way to model longer-term contextual
and temporal dependencies present in music.




TALK SUMMARY
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TOWARD COMPREHENSIVE RHYTHMIC
UNDERSTANDING

o Or “Live Drum Understanding”
o Goal: Go beyond simple beat tracking to provide context-
aware, instrument-aware information in real-time, e.g.
e “This rhythm is in 5/4 time”
e “This drummer is playing syncopated notes on the hi-hat”
e “The ride cymbal pattern has a swing feel”

o “This is a Samba rhythm”




LIVE DRUM UNDERSTANDING SYSTEM

Drum Drum-wise
audio activations

Beat
Tracking

Drum
Detection

Gamma Mixture Model
training of drum templates

*Non-negative decomposition
onto templates.

Beat grid Beat
locations,
Pattern
Drum analysis
> Pattern —>
Analysis

*Generative deep learning of
drum patterns

*Stacked Conditional Restricted
Boltzmann Machines




REQUIREMENTS FOR DRUM DETECTION

o Real-Time/Live operation

o Useful with any percussion setup.

o Before a performance, we can quickly train the system for a
particular percussion setup.

o Amplitude (dynamics) information.




DRUM DETECTION: MAIN POINTS

o Gamma Mixture Model

o For learning spectral drum templates.
e Cheaper to train than GMM
e More stable than GMM

o Non-negative Vector Decomposition (NVD)

o For computing template activations from drum onsets.

* Learning multiple templates per drum improves
separation.

» The use of “tail” templates reduces false positives.




DRUM DETECTION SYSTEM
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(drum-wise audio)
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DRUM DETECTION SYSTEM

training data

(drum-wise audio)
L———— P Onset _ 8 Gamma
I—b Detection Mixture Model

- oes o o e e e e e -

performance cluster parameters
(raw audio) (drum templates)
Non-negative
Vector
D i drum
ccomposition activations
——

e Training

—> Performance a




SPECTROGRAM SLICES

o Extracted at onsets.
o Each slice contains 100ms (~17 frames) of audio
o 80 bark-spaced bands per channel [Battenberg 2008]

o During training, both “head” and “tail” slices are extracted.

o Tail templates serve as decoys during non-negative vector decomposition.
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DRUM DETECTION SYSTEM
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TRAINING DRUM TEMPLATES

o Instead of taking an “average” of
all training slices for a single
drum... k=3

o (Cluster them and use the cluster 08/ . o
centers as the drum templates.

e This gives us multiple
templates per drum...

e Which helps represent the
variety of sounds that can be
made by a single drum.




CLUSTERING USING MIXTURE MODELS

o Train using the Expectation-Maximization (EM)

algorithm. N
o Gaussian Mixture Model (GMM) [\ ks
« Covariance matrix — expensive to compute, possibly - /N A
unstable when data 1s lacking. N
o Enforces a (scaled,squared) Euclidean distance T T

S d (e, y) = 3@ — i)

o Gamma Mixture Model

e Single mean vector per component

e Variance increases with mean (like human
hearing) . 0 10 20 30 40 50

e Enforces an Itakura-Saito (IS) divergence measure

o A scale-invariant perceptual distance between audio

spectra. €T; ZT;
dis(z,y) =) = —log= —1
Yi Yi

1




AGGLOMERATIVE CLUSTERING

o How many clusters to train?

o We use Minimum Description Length (MDL), aka BIC, to choose the
number of clusters.

e Negative log-likelihood

e + penalty term for number of clusters.
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MDL= 187.8 MDL=-739.8 MDL= -835.6 MDL=-201.5 MDL= 1373

e 1. Run EM to convergence.

o 2. Merge the two most similar clusters.

e 3. Repeat 1,2 until we have a single cluster.
e 4. Choose parameter set with smallest MDL.




DRUM DETECTION SYSTEM
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DECOMPOSING ONSETS ONTO TEMPLATES

o Non-negative Vector Decomposition (NVD)
o A simplification of Non-negative Matrix Factorization (NMF)
e W matrix contains drum templates in its columns.

e Adding a sparsity penalty (LL1) on h improves NVD.
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DECOMPOSING ONSETS ONTO TEMPLATES

o What do we do with the output of NVD?

 The head template activations for a single drum are summed
to get the total activation of that drum.

e The tail template activations are discarded.

o They simply serve as “decoys” so that the long decay of a previous
onset does not affect the current decomposition as drastically.

Template matrix: W [ T T

Hgad T_emplateg

NVD output: h

4
L 4

Hi-Hat — Hi-Hat - |
Bass Snare (closed) (open) Ride Tail Templates

/

Drum Activations




EVALUATION

o Test Data:

23 minutes total, 8022 drum onsets
8 different drums/cymbals:

o Bass, snare, hi-hat (open/closed), ride, 2 toms, crash.

Recorded to stereo using multiple
microphones.

50-100 training hits per drum.

o Parameters to vary for testing:

Maximum number of templates per drum
{0,1,30}

o Result Metrics

Detection accuracy:
o F-Score

o Amplitude Fidelity X-y

o Cosine similarity Scos ()_C)v )7 ) — W
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DETECTION RESULTS

o Varying maximum templates per drum.
o Adding tail templates helps the most.
o >1 head template helps too.

Detection Results Varying Max Templates per Drum

Detection Fscores

Ky =30
Kr=1

Kp=1
Kr=1

0.80

0.75

0.70

0.65

Amplitude Similarity

Ky =30 Ky=30 Kyg=1 Ky =30 Ky =
Kr =30 Kr=1 Kr=1 Kr=0 Kr=0



AUDIO EXAMPLES

o 100 BPM, rock, syncopated snare drum, fills/flams.
o Note the messy fills in the KH=1, KT=0 version

Original Performance




AUDIO EXAMPLES

o 181 BPM, fast rock, open hi-hat
o Note the extra hi-hat notes in the KH=1, KT=0 version.

Original Performance

KH=30, KT=30

KH=1, KT=0

mmmmm



AUDIO EXAMPLES

o 94 BPM, snare drum march, accented notes

o Note the extra bass drum notes and many extra cymbals in the KH=1, KT=0 version.

Original Performance
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DRUM DETECTION SUMMARY

o Drum detection front end for a complete drum
understanding system.
o Gamma Mixture Model
e Cheaper to train than GMM (no covariance matrix)

e More stable than GMM (no covariance)

o Allows soft clustering with perceptual Itakura-Saito distance
in the linear domain (important for learning NVD templates).

o Non-negative Vector Decomposition

o Greatly improved with tail templates and multiple head
templates per drum.

o Next steps

e Online training of templates.
e Training a more general model using many templates




LIVE DRUM UNDERSTANDING SYSTEM
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LIVE DRUM UNDERSTANDING SYSTEM
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DRUM PATTERN ANALYSIS

o Desired information: Beat Label
. . Probabiliti

o What style is this? rOREDITES
 What i1s the meter? (4/4,3/4...) hidden
e Double/half time feel? layer 2

e Where is the “one”? _

hidden
layer 1

.

n
n

Hf f

o Typical approach:

Recent Past

Instead...

Deep Neural Network

hidden unit activations

t

hidden unit activations

Drum Pattern ]

gl

T K
TN K

1
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o Drum pattern template correlation.

|

o Align one or more templates with drum onsets.




CONDITIONAL RESTRICTED BOLTZMANN
MACHINE

o Modeling motion, language models, other sequences.

o Models: P(v]y) hidden units
o For music: @ @ @ e b
» P(current notes | past notes) B

o Useful for generating drum patterns.

Piw
D@ - D) - ()

conditioning units visible units

Past notes Current Notes

\ 4

o Used to pre-train neural network.

o Intuition for drums
 Hidden units model the drummer’s options given the recent past.
» And therefore, code information about the state of the drumming.




TEST SETUP

o 173 twelve-measure sequences

* Recorded on Roland V-Drums
e 33,216 beat subdivisions (16 per measure).
e Rock, funk, drum ‘n’ bass, metal, Brazilian rhythms.

o Network configurations
o Each with 2 measures of context
e ~90,000 weights each
e C(Conditional RBM (CRBM) is a variation on the RBM
o 1. CRBM (3 layers)
e 800 hidden units
o 2. CRBM—->RBM (4 layers)
e 600, 50 hidden units
o 3. CRBM—->CRBM (4 layers)
e 200, 50 hidden units
o 4. CRBM->CRBM->RBM (5 layers)
e 200, 25, 25 hidden units




TRAINING

o Training tricks

o L2 weight decay, momentum, dynamic learning rate.

o Implementation

e Python with Gnumpy (numerical routines on GPU)

e GPU computing very important to contemporary neural
network research.

e Around 30 minutes to train one model.




MEASURE ALIGNMENT RESULTS

o 3-fold cross-validated results.

o Neural network models eliminate half the errors of template correlation.
o Not a significant difference between NN models.

o This will change with a larger, more diverse dataset.

Measure (Whole Note) Alignment Accuracy by Model
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QUARTER NOTE ALIGNMENT RESULTS

o Can compute quarter note alignment from full measure alignment
probabilities.

o Quarter note alignment can help correct a beat tracker when it gets out of
phase.

o Again, half the errors are eliminated.

Quarter Note Alignment Accuracy by Model

1.00 I I I I I

Max Probability
Label Accuracy

- 3} LRBM-25 2-Template
LRBM-50 LCRBM-50 CRBM-25 Correlation

LCRBM-800 CRBM-600 CRBM-200 CRBM-200




EXAMPLE OUTPUT

o Label Probabilities (Red = 1, Blue = 0)
o White lines denote measure boundaries
o EKach column shows the probability of each label at that time.

Label Probabilities for Various Models [test sequ

ence 67]
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EXAMPLE OUTPUT

o Label Estimates (Red denotes estimate)
o White lines denote measure boundaries

Label Estimates for Various Models [test sequence 67]
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Beat Label
Classification Accuracy

HMM FILTERING

o Can use label probabilities as observation posteriors in HMM.
o Assign high probability to sequential label transitions.

o Models producing lower cross-entropy improve more when
using HMM-filtering.

HMM-Filtered Labeling Accuracy
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EXAMPLE OUTPUT

o HMM-Filtered Label Probabilities

HMM-Filtered Label Probabilities [test sequence 67]
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ANALYSIS OF RESULTS

o Generatively pre-trained neural network models eliminate
about half the errors compared to a baseline template
correlation method.

o HMM-filtering can be used to improve accuracy.
o Overfitting present in backpropagation.

o Address overfitting with:
» Larger dataset
e “Dropout” [Hinton, 2013]

e Many other regularization techniques

o Next steps:

 Important next step is evaluation with much larger, more
diverse dataset.

« KEvaluate ability to do style, meter classification.




SUMMARY

o Content-Based Music Information Retrieval

e Mood, genre, onsets, beats, transcription, recommendation, and
much, much more!

o Exciting directions include feature learning and RNNSs.
o Drum Detection

o Learn multiple templates per drum using agglomerative gamma
mixture model training.

e The use of “tail” templates reduce false positives.

o Drum Pattern Analysis

e A deep neural network can be used to make all kinds of rhythmic
inferences.

 For measure alignment, reduces errors by ~50% compared to
template correlation.

e Generalization can be improved using more data and
regularization techniques during backpropagation.




GETTING INVOLVED IN MUSIC
INFORMATION RETRIEVAL

o Check out the proceedings of ISMIR (free online):
e http://www.ismir.net/

o Participate in MIREX (annual MIR eval):
e http:/www.music-ir.org/mirex/wiki/MIREX HOME

o Join the Music-IR mailing list:

e http://listes.ircam.fr/wws/info/music-ir

o Join the Music Information Retrieval Google Plus
community (Just started it):

e https://plus.google.com/communities/109771668656894350107
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EXTRA SLIDES




ONSET DETECTION

*Onset Detection Function (ODF): Differentiated log-energy of
multiple perceptual sub-bands.

laudio in

si(n) M

u-Law
do FSFJ_ 3me .| Sub-band energy > .
window size = 2om " | 20 Bark bands/channel g compression
hop size = 5.8ms w=108

¢ ci(n)

Smoothing Half-wave Mean across
Hann window > rectified subbands
20 Hz cutoff zi(n) derivative dz;(n)

o(n)

onset detection function

*Onsets are located using ODF and a dynamic, causal peak-
picking threshold.




DRUM SEPARATION

o Some Approaches to “Drum Transcription”

o Feature-based classification [Gouyon 2001]

« NMF with general drum templates [Paulus 2005]

o General “average” drum templates.

o Match and Adapt [Yoshii 2007]

o Offline, iterative

o Requirements for “Drum Separation”

e Online/Live operation
o Useful with any percussion setup.

e Which drum is playing when?
And at what dynamic level?




GAMMA DISTRIBUTION

o Mixture model is composed of gamma distributions.

o The gamma distribution models the sum of k independent
exponential distributions.

Gamma Distribution, Constant Mean: u = 20
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GAMMA MIXTURE MODEL

o Multivariate Gamma (independent components):

M k 1 —Aiyi

o Mixture density:

p(10) = Y mpGilA,k) 0= {A,mk,

m = plan=1I)




THE EM ALGORITHM: GAMMA EDITION

o E-step: (compute posteriors)

p(xy = 1[3,,0") 7 exp (—kdis (Y, Hi))

§-<:1 7jexp (—kdis (V. 1L}))

o M-step: (update parametersy

Ny = Zp(xn:l]ﬁ@,O(t))
n=1
- kN
A< = ———
N1 VD (X = 1[5, 0))
Nl*
T <

N




AGGLOMERATIVE CLUSTERING

o How many clusters to train?

o V}fe use Minimum Description Length (MDL) to choose the number of
clusters.

e Negative log-likelihood

e + penalty term for number of clusters.

N K

MDL(K,8) = - log (Z p(ﬁ)tl)m> + LL1log(NM)
n=1 =1
L = KM+(K—1)

e 1. Run EM to convergence.

o 2. Merge the two most similar clusters.

e 3. Repeat 1,2 until we have a single cluster.
e 4. Choose parameter set with smallest MDL.




DECOMPOSING ONSETS ONTO TEMPLATES
o To solve this problem (add L1 penalty):

IILin d]S()_C),Wi)l), hi ZO Vi
h

o I use the IS distance as the cost function in the above.

 While the IS distance is not strictly convex, in practice it is
non-increasing under the following update rule:




RESTRICTED BOLTZMANN MACHINE

b by bar
!

» Probabilistic graphical model hidden
o Weights/biases define: layer

e—E(v,h)
p(v,h) = — E(v,h) = —a"v—bTh —vTWh

@
. - visible
o Factorial conditionals: layer @@@ @
p(v) =TTty o) = [T o) T T ]
a as an
o Logistic activation probablhtles

p(v; = 1|h) = o(a; + Zj Wijhj)
p(hi = 1|v) = o (b; + >_; Wi;vi)

o Stochastic autoencoder [Hinton 2006]

1 a2

o Binary units (as opposed to real-valued units)

o Act as a strong regularizer (prevent overfitting)

o Training: maximize likelihood of data under the model p(v) Q




CONTRASTIVE DIVERGENCE

o ML learning can be done using Gibbs
sampling to compute samples from: b b

» The joint p(v,h) hidden @
» By taking alternating samples from: ayer
p(v; =1lh) = o(a; + Zj Wijih;) /M\W
p(hi =1|v) =0 (b; + >, Wijv;)
o But, this can take a very long time to \1:;2'5 @ @ @ \GN)

converge. '|' I ‘|'

o Approximation:
“Contrastive Divergence” [Hinton 2006]

o Take only a few alternating samples (k)
for each update. (CD-k)
AWij o< (vihj)o — (vihj)k
Aai X <’U7;>0 — <Uz>kz
Abj o< (hj)o — (hj)k




DEEP BELIEF NETWORKS
(STACKING RBMS)

o Deep Belief Network (4+ layers)

e Pre-train each layer as an RBM
o Greedy Pre-training Iayeng @ @ @ :
e Train first level RBM oo t- e

o Use real-valued hidden unit Iayer2i @ @ @ i

activations of an RBM as input to IR WikeosseesssmssssorwesresmssssssessmetO
subsequent RBM. T lWl |

e Train next RBM visible i @ @ @ @ i
layer | !

» Repeat until deep enough.

o Fine-Tuning
o After pre-training, network is
discriminatively fine-tuned using

backpropagation of the cross-
entropy error.




EXAMPLE HMM FILTERING

o White lines denote measure boundaries.

Label
Probabilities

Label
Probability
Classifier

HMM-
Filtered
Probabilities

HMM
Classifier

Ground
Truth

0 16 32 48 64 80 96 112 128 144
Beat subdivision [16 per measure]




EXAMPLE OUTPUT

o HMM-Filtered Label Estimates

HMM-Filtered Label Estimates [test sequence 67]

LRBM-50
CRBM-600

LCRBM-50
CRBM-200

LRBM-25
CRBM-25
CRBM-200




