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MACHINE LISTENING 

¢  Speech processing 

�  Speech processing makes up the vast majority of funded 
machine listening research. 

�  Just as there’s more to Computer Vision than OCR, there’s 
more to machine listening than speech recognition! 

¢  Audio content analysis 

�  Audio fingerprinting (e.g. Shazam, Gracenote) 

�  Audio classification (music, speech, noise, laughter, cheering) 

�  Audio event detection (new song, channel change, hotword) 

¢  Content-based Music Information Retrieval (MIR) 

�  Today’s topic 
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GETTING COMPUTERS TO  
“LISTEN” TO MUSIC 

¢  Not trying to get computers to “listen” for enjoyment. 

¢  More accurate: Analyzing music with computers. 

¢  What kind of information to get out of the analysis? 

�  What instruments are playing? 

�  What is the mood? 

�  How fast/slow is it (tempo)? 

�  What does the singer sound like? 

�  How can I play this song on the guitar/drums? 
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CONTENT-BASED MUSIC INFORMATION 
RETRIEVAL 

¢  Many tasks: 

�  Genre, mood classification, auto-tagging 

�  Beat tracking, tempo detection 

�  Music similarity, playlisting, recommendation 

¢  Heavily aided by collaborative filtering 

�  Automatic music transcription 

�  Source separation (voice, drums, bass…) 

�  Music segmentation (verse, chorus) 
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TALK SUMMARY 

¢  Introduction to Music Information Retrieval 

�  Some common techniques 

�  Exciting new research directions 

¢  Live Drum Understanding 

�  Drum detection/transcription 

�  Drum pattern analysis 
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QUICK LESSON: THE SPECTROGRAM 
¢  The spectrogram: Very common feature used in audio 

analysis. 

¢  Time-frequency representation of audio. 

¢  Take FFT of adjacent frames of audio samples, put them in a 
matrix. 

¢  Each column shows frequency content at a particular time. 
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GENRE/MOOD CLASSIFICATION:  
TYPICAL APPROACHES 
¢  Typical approach: 

�  Extract a bunch of hand-designed features describing small 
windows of the signal (e.g., spectral centroid, kurtosis, 
harmonicity, percussiveness, MFCCs, 100’s more…). 

�  Train a GMM or SVM to predict genre/mood/tags by either: 
¢  Summarizing a song using mean/variance of each feature 

¢  Log-likelihood sum across frames (GMM) or frame-wise voting (SVM) 

¢  Pros: 
�  Works fairly well, was state of the art for a while. 

�  Well understood models, implementations widely available. 

¢  Cons: 
�  Bag-of-frames style approach lacks ability to describe rhythm and 

temporal dynamics. 

�  Getting further improvements requires hand designing more 
features. 

8 



LEARNING FEATURES: 
NEURAL NETWORKS 

¢  Each layer computes a non-linear transformation of 
the previous layer. 

�  Linear transformation (weight matrices) 

�  + non-linearity (e.g. sigmoid [σ])  

�  h = σ(W1v),  o = σ(W2h) 

¢  Train to minimize output error. 

¢  Each hidden layer can be thought of as a set of 
features. 

¢  Train using backpropagation. 

¢  Iterative steps: 

�  Compute activations 

�  Compute output error 

�  Backprop. error signal 

�  Compute gradients 

�  Update all weights. 

¢  Resurgence of neural networks: 

�  More compute 

�  More data 

�  A few new tricks… 
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DEEP NEURAL NETWORKS 

¢  Deep Neural Networks 
�  Millions to billions of parameters 
�  Many layers of “features” 
�  Achieving state of the art 

performance in vision and speech 
tasks. 

¢  Problem: Vanishing error signal. 
�  Weights of lower layers do not 

change much. 

¢  Solutions: 
�  Train for a really long time. L 
�  Pre-train each hidden layer as an 

autoencoder. [Hinton, 2006] 

�  Rectified Linear Units 
[Krizhevsky, 2012] 
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AUTOENCODERS AND  
UNSUPERVISED FEATURE LEARNING 

¢  Many ways to learn features in an 
unsupervised way: 

¢  Autoencoders – train a network to 
reconstruct the input 

�  Restricted Boltzmann Machine (RBM) 
[Hinton, 2006] 

�  Denoising Autoencoders [Vincent, 2008] 

�  Sparse Autoencoders 

¢  Clustering – K-Means, mixture models, 
etc. 

¢  Sparse Coding – learn overcomplete 
dictionary of features with sparsity 
constraint 11 
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GENRE/MOOD CLASSIFICATION: 
NEWER APPROACHES 
¢  Newer approaches to feature extraction: 

�  Learn spectral features using Restricted Boltzmann Machines 
(RBMs) and Deep Neural Networks (DNN) [Hamel, 2010] – good 
genre performance. 

�  Learn sparse features using Predictive Sparse Decomposition 
(PSD) [Henaff, 2011] – good genre performance 

�  Learn beat-synchronous rhythm and timbre features with RBMs 
and DNNs [Schmidt, 2013] – improved mood performance 

�  Tune multi-layer wavelet features called Deep Scattering 
Spectrum [Anden, 2013]* - state-of-the-art genre performance 

¢  Pros: 

�  Hand-designing individual features is not required. 

�  Computers can learn complex high-order features that humans 
cannot hand code. 

¢  Further work: 

�  More work on incorporating context, rhythm, and temporal 
dynamics into feature learning 
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* Current state-of-the art on GTZAN genre dataset 

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

sgn(xi)(|xi|� �i)+ (Figure 1). The shrinkage function sets
any code components below a certain threshold � to zero,
which helps ensure that the predicted code will be sparse.
Training the encoder is done by iterating the above process,
with U = {W,b, �}. Note that once the encoder is trained,
inferring sparse codes is very efficient, as it essentially re-
quires a single matrix-vector multiplication.

3. LEARNING AUDIO FEATURES

In this section we describe the features learned on music
data using PSD.

3.1 Dataset

We used the GTZAN dataset first introduced in [29], which
has since been used in several works as a benchmark for
the genre recognition task [2, 3, 6, 12, 18, 25]. The dataset
consists of 1000 30-second audio clips, each belonging to
one of 10 genres: blues, classical, country, disco, hiphop,
jazz, metal, pop, reggae and rock. The classes are balanced
so that there are 100 clips from each genre. All clips are
sampled at 22050 Hz.

3.2 Preprocessing

To begin with, we divided each clip into short frames of
1024 samples each, corresponding to 46.4ms of audio. There
was a 50% overlap between consecutive frames. We then
applied a Constant-Q transform (CQT) to each frame, with
96 filters spanning four octaves from C2 to C6 at quarter-
tone resolution. For this we used the toolbox provided by
the authors of [27]. An important property of the CQT is
that the center frequencies of the filters are logarithmically
spaced, so that consecutive notes in the musical scale are
linearly spaced. We then applied subtractive and divisive
local contrast normalization (LCN) as described in [15],
which consisted of two stages. First, from each point in the
CQT spectrogram we subtracted the average of its neigh-
borhood along both the time and frequency axes, weighted
by a Gaussian window. Each point was then divided by the
standard deviation of the new neighborhood, again weighted
by a Gaussian window. This enforces competition between
neighboring points in the spectrogram, so that low-energy
signals are amplified while high-energy ones are muted. The
entire process can be seen as a simple form of automatic
gain control.

3.3 Features Learned on Frames

We then learned dictionaries on all frames in the dataset, us-
ing the process described in 2.2. The dictionary size was
set to 512, so as to get overcomplete representations. Once
the dictionary was learned, we trained the encoder to pre-
dict sparse representations using the process in 2.3. In both

Figure 2. A random subset of the 512 basis functions
learned on full CQT frames. The horizontal axis represents
log-frequency and ranges from 67 Hz to 1046 Hz.

cases, we used the Fast Iterative Shrinkage-Thresholding al-
gorithm (FISTA) [1] to compute optimal sparse codes. Some
of the learned basis functions are displayed in Figure 2. One
can see single notes and what appear to be series of linearly
spaced notes, which could correspond to chords, harmonics
or harmonies. Note that some of the basis functions appear
to be inverted, since the code coefficients can be negative.
A number of the learned basis functions also seem to have
little recognizable structure.

3.4 Features Learned on Octaves

We also tried learning separate dictionaries on each of the
four octaves, in order to capture local frequency patterns.
To this end we divided each frame into four octaves, each
consisting of 24 channels, and learned dictionaries of size
128 on each one. We then trained four separate encoders
to predict the sparse representations for each of the four oc-
taves. Some of the learned basis functions are shown in Fig-
ure 3. Interestingly, we find that a number of basis functions
correspond to known chords or intervals: minor thirds, per-
fect fifths, sevenths, major triads, etc. A number of basis
functions also appear to be similar versions of each other
shifted across frequency. Other functions have their en-
ergy spread out across frequency, which could correspond

683
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ONSET DETECTION 
¢  Onset detection is important for music 

transcription, beat tracking, tempo detection, and 
rhythm summarization. 

¢  Describing an onset: 
�  Transient 

¢  Short interval when music signal evolves unpredictably.  

�  Attack 
¢  Amplitude envelope increasing. 

�  Decay 
¢  Amplitude envelope decreasing. 

�  Onset 
¢  Point in time chosen to represent beginning of transient. 

¢  Onset detection can be hard for certain 
instruments with ambiguous attacks or when a 
note changes without a new attack (legato). 
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ONSET DETECTION: TYPICAL APPROACHES 

¢  Computing an Onset Detection Function (ODF): 
�  Derivative of energy envelope 

�  Derivative of band-wise log-energies [Klapuri, 2006] 

�  Complex spectral domain (difference with predictions of phase 
and magnitude) [Bello, 2004] 

¢  Choosing onsets using the ODF: 
�  Peak pick local maxima above a dynamic threshold [Bello, 2005]. 

¢  Pros: 

�  Simple to implement. 

�  Works fairly well (60-80% accurate) 

¢  Cons  

�  Lots of hand tuning of thresholds 

�  No machine learning 
14 



RECURRENT NEURAL NETWORKS 
¢  Non-linear sequence model 

¢  Hidden units have connections to previous time step 

¢  Unlike HMMs, can model long-term dependencies using 
distributed hidden state. 

¢  Recent developments (+ more compute) have made them much 
more feasible to train. 
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Figure 2.3: A Recurrent Neural Network is a very deep feedforward neural network that has a layer for
each timestep. Its weights are shared across time.
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where e(·) and g(·) are the hidden and output nonlinearities of the RNN, and h
0

is a vector of parameters
that store the very first hidden state. The loss of the RNN is usually a sum of per-timestep losses:
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The derivatives of the RNNs are easily computed with the backpropagation through time algorithm
(BPTT; Werbos, 1990; Rumelhart et al., 1986):
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2.5.1 The difficulty of training RNNs

Although the gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, espe-
cially on problems with long-range temporal dependencies (Bengio et al., 1994; Martens and Sutskever,
2011; Hochreiter and Schmidhuber, 1997), due to their nonlinear iterative nature. A small change to
an iterative process can compound and result in very large effects many iterations later; this is known

from [Sutskever, 2013] 
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TRAINING AN RNN ON WIKIPEDIA 

¢  Train RNN to predict next character (not word) 

¢  Multiplicative RNN [Sutskever, 2013] 

¢  Text generation demo: http://www.cs.toronto.edu/~ilya/rnn.html 

¢  The machine learning meetup in San Francisco is considered enormously 
emphasised. While as a consequence of these messages are allocated in the 
environment to see the ideas and pollentium changes possible with the 
Machinese gamma integrals increase, then the prefix is absent by a variety of 
fresh deeperwater or matter level on 2 and 14, yet the… 16 

CHAPTER 5. LANGUAGE MODELLING WITH RNNS 56

Figure 5.2: The Multiplicative Recurrent Neural Network “gates” the recurrent weight matrix with the
input symbol. Each triangle symbol represents a factor that applies a learned linear filter at each of its
two inputs. The product of the outputs of these two linear filters is then sent, via weighted connections,
to all the units connected to the output of the triangle. Consequently every input vector can synthesize
its own hidden-to-hidden weight matrix by determining the gains on all of the factors, each of which
represents a rank one hidden-to-hidden weight matrix defined by the outer-product of its incoming and
outgoing weight-vectors to the hidden units. The synthesized weight matrices share “structure” because
they are all formed by blending the same set of rank one matrices. In contrast, an unconstrained tensor
model provides each input with a completely separate weight matrix.

where diag(v) is a diagonal matrix whose diagonal is given by v. If the dimensionality of the vector
W

fv

v
t

, denoted by F , is sufficiently large, then the factorization is as expressive as the original tensor.
Smaller values of F require fewer parameters while hopefully retaining a significant fraction of the
tensor’s expressive power.

The Multiplicative RNN (MRNN) is the result of factorizing the Tensor RNN by expanding eq. 5.4
within eq. 5.1. The MRNN computes the hidden state sequence (h
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which implement the neural network in fig. 5.2. The tensor factorization of eq. 5.4 has the interpretation
of an additional layer of multiplicative units between each pair of consecutive layers (i.e., the triangles
in fig. 5.2), so the MRNN actually has two steps of nonlinear processing in its hidden states for every
input timestep. Each of the multiplicative units outputs the value f

t

of eq. 5.5 which is the product of
the outputs of the two linear filters connecting the multiplicative unit to the previous hidden states and
to the inputs.

We experimentally verified the advantage of the MRNN over the RNN when the two have the same
number of parameters. We trained an RNN with 500 hidden units and an MRNN with 350 hidden units
and 350 factors (so the RNN has slightly more parameters) on the “machine learning” dataset (dataset 3
in the experimental section). After extensive training, the MRNN achieved 1.56 bits per character and
the RNN achieved 1.65 bits per character on the test set.

5.3 The Objective Function

The goal of character-level language modeling is to predict the next character in a sequence. More
formally, given a training sequence (v
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, . . . , v
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), the RNN uses the sequence of its output vectors
(o
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, . . . , o
T

) to obtain a sequence of predictive distributions P (v
t+1

|vt
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t

), where the



ONSET DETECTION: STATE-OF-THE-ART 

¢  Using Recurrent Neural Networks (RNN) [Eyben, 2010], 
[Böck, 2012] 

¢  RNN output trained to predict onset locations.  

¢  80-90% accurate 

¢  Can improve with more labeled training data, or possibly 
more unsupervised training. 
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Figure 2: Window functions applied to audio signal before STFT,
with the current position of the audio signal indicated by a vertical
line.

the overlap of the two frames is 0.5. This results in ⌧ values of
1, 2, and 4 for the STFT window lengths of 512, 1024, and 2048
samples. Although technically speaking it is a quotient because
it is calculated using logarithmic representations, we use the term
“difference” between two frames. The three parallel Bark-filtered
spectrograms and the differences make up the 144-dimensional in-
put vector for the neural network.

2.2. Neural Network

To work in a real-time online scenario, the neural network of the
offline approach [5] had to be changed considerably. Since bidi-
rectional neural networks violate causality, they are not suitable
for this task and were replaced by a unidirectional one. Also, the
Long Short-Term Memory (LSTM) units used in the hidden layer
were replaced by standard units with a hyperbolic tangent activa-
tion function. This reduces the connections in the recurrent hidden
layers by a factor of four, because the standard units do not require
the gates of the LSTM units to be connected. Although LSTM
units are able to model a wider temporal context, normal units per-
form similarly well because the temporal context for onset detec-
tion is limited to only a few frames. The overall topology of the
network, consisting of three fully connected recurrent hidden lay-
ers with 20 units each, is retained. The modifications listed reduce
the computational complexity of the system and make it suitable
for real-time processing.

2.2.1. Network Training

The network was trained as a classifier with supervised learning
and early stopping on a 75% portion of the complete dataset de-
scribed in Section 3. Each audio sequence was pre-processed as
described above and presented to the network for learning. The
network weights were initialized with random values following
a Gaussian distribution with mean 0 and standard deviation 0.1.
Standard gradient descent with backpropagation of the errors was
used to train the network. To avoid over-fitting, the performance
was evaluated after each training iteration on a separate validation
set (a disjoint 15% of the training set chosen at random). If no im-
provement was observed for 20 epochs, training was stopped, and
the network state with the best performance on the validation set
was subsequently used.

When training a neural network to detect an upcoming on-
set, various strategies for target placement are possible: placing
them at the real ground-truth positions and training the classifier
as in an offline scenario, or displacing the targets forward or back
by one frame. Although neural networks can adapt to a target
displacement, the method of training with correctly located tar-
gets in combination with the post-processing described in Sec-
tion 2.3 yielded the best classification results. Thus, only the post-
processing method had to be modified for an online scenario.

2.2.2. Network Testing

The output of the network is an onset activation function with val-
ues in the range of [0 . . . 1] which represent the probabilities of
onsets at given positions. Figure 3 shows a typical onset activation
function with clearly visible peaks at the annotated positions.

2.3. Post-processing

Since no future values are available in online mode, the traditional
approach of finding local maxima in the thresholded onset activa-
tion function cannot be applied here. Instead, the onset is predicted
at the center of the first frame that follows the activation function
exceeding a given threshold, determined on the validation sets by
8-fold cross-validation.

Figure 3: Onset activation function (output of the neural network)
of the system for a 1-second-excerpt of a pop song shown as a solid
black line. Annotated onsets are indicated by vertical lines and the
normalized detection function obtained with spectral flux is plotted
as a black dotted line.

Compared to simple signal-based onset detection methods, the
main advantage of using a neural network is that its onset activa-
tion function has a very low noise floor with high peaks at the onset
positions (see Figure 3, solid black line). Thus, a very low thresh-
old can be used to detect the onsets as early as possible without
risking many false detections. To prevent repeated reporting of an
onset (and thus producing numerous false positive detections), an
onset is only reported if no onsets have been detected in the previ-
ous two frames (20 ms).

In the rare case of a slowly rising onset activation function
(which exceeds the threshold), this peak-picking method could
lead to some early false positive detections. To give an estimate
of the penalty, we also evaluated our new algorithm with an of-
fline peak picking algorithm which uses only local maxima after
thresholding of the onset activation function.

DAFX-2



OTHER EXAMPLES OF RNNS IN MUSIC 

¢  Examples: 

�  Blues improvisation (with LSTM RNNs) [Eck, 2002] 

�  Polyphonic piano note transcription [Böck, 2012] 

�  Classical music generation and transcription [Boulanger-
Lewandowski, 2012] 

¢  Other distributed-state sequence models include: 

�  Recurrent Temporal Restricted Boltzmann Machine 
[Sutskever, 2013] 

�  Conditional Restricted Boltzmann Machine [Taylor, 2011] 

¢  Used in drum pattern analysis later. 

¢  RNNs are a promising way to model longer-term contextual 
and temporal dependencies present in music. 

 

18 



TALK SUMMARY 

¢  Introduction to MIR 

�  Common techniques: 

¢  Genre/Mood Classification, Onset Detection 

�  Exciting new research directions: 

¢  Feature learning, temporal models (RNNs) 

¢  Live Drum Understanding 

�  Drum detection/transcription 

�  Drum pattern analysis 
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TOWARD COMPREHENSIVE RHYTHMIC 
UNDERSTANDING 

¢  Or “Live Drum Understanding” 

¢  Goal: Go beyond simple beat tracking to provide context-
aware, instrument-aware information in real-time, e.g. 

�  “This rhythm is in 5/4 time” 

�  “This drummer is playing syncopated notes on the hi-hat” 

�  “The ride cymbal pattern has a swing feel” 

�  “This is a Samba rhythm” 
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LIVE DRUM UNDERSTANDING SYSTEM 

Drum 
Detection 

Beat 
Tracking 

Drum 
Pattern 
Analysis 

Drum 
audio 

Drum-wise 
activations 

Beat grid Beat 
locations,  
Pattern 
analysis 

• Gamma Mixture Model 
training of drum templates 

• Non-negative decomposition 
onto templates. 

• Generative deep learning of 
drum patterns  

• Stacked Conditional Restricted 
Boltzmann Machines 

22 



REQUIREMENTS FOR DRUM DETECTION 

¢  Real-Time/Live operation 

¢  Useful with any percussion setup. 

�  Before a performance, we can quickly train the system for a 
particular percussion setup. 

¢  Amplitude (dynamics) information. 
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DRUM DETECTION: MAIN POINTS 

¢  Gamma Mixture Model 

�  For learning spectral drum templates. 

�  Cheaper to train than GMM 

�  More stable than GMM 

¢  Non-negative Vector Decomposition (NVD) 

�  For computing template activations from drum onsets. 

�  Learning multiple templates per drum improves 
separation. 

�  The use of “tail” templates reduces false positives.  

24 



DRUM DETECTION SYSTEM 
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SPECTROGRAM SLICES 
¢  Extracted at onsets. 

¢  Each slice contains 100ms (~17 frames) of audio 

¢  80 bark-spaced bands per channel [Battenberg 2008] 

¢  During training, both “head” and “tail” slices are extracted. 

�  Tail templates serve as decoys during non-negative vector decomposition. 

Head Slice Tail Slice 

33ms 67ms 100ms 
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TRAINING DRUM TEMPLATES 

¢  Instead of taking an “average” of 
all training slices for a single 
drum… 

¢  Cluster them and use the cluster 
centers as the drum templates.  

�  This gives us multiple  
templates per drum… 

�  Which helps represent the 
variety of sounds that can be 
made by a single drum. 
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CLUSTERING USING MIXTURE MODELS 
¢  Train using the Expectation-Maximization (EM) 

algorithm. 

¢  Gaussian Mixture Model (GMM) 
�  Covariance matrix – expensive to compute, possibly 

unstable when data is lacking. 

�  Enforces a (scaled,squared) Euclidean distance 
measure. 

 

¢  Gamma Mixture Model 
�  Single mean vector per component 

�  Variance increases with mean (like human 
hearing). 

�  Enforces an Itakura-Saito (IS) divergence measure 
¢  A scale-invariant perceptual distance between audio 

spectra. 
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AGGLOMERATIVE CLUSTERING 
¢  How many clusters to train? 

¢  We use Minimum Description Length (MDL), aka BIC, to choose the 
number of clusters. 
�  Negative log-likelihood  

�  + penalty term for number of clusters. 

�  1. Run EM to convergence. 

�  2. Merge the two most similar clusters. 
�  3. Repeat 1,2 until we have a single cluster. 
�  4. Choose parameter set with smallest MDL. 
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DECOMPOSING ONSETS ONTO TEMPLATES 
¢  Non-negative Vector Decomposition (NVD) 

�  A simplification of Non-negative Matrix Factorization (NMF) 

�  W matrix contains drum templates in its columns. 

�  Adding a sparsity penalty (L1) on h improves NVD. 
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DECOMPOSING ONSETS ONTO TEMPLATES 

¢  What do we do with the output of NVD? 

�  The head template activations for a single drum are summed 
to get the total activation of that drum. 

�  The tail template activations are discarded. 

¢  They simply serve as “decoys” so that the long decay of a previous 
onset does not affect the current decomposition as drastically. 
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EVALUATION 
¢  Test Data: 

�  23 minutes total, 8022 drum onsets 
�  8 different drums/cymbals: 

¢  Bass, snare, hi-hat (open/closed), ride, 2 toms, crash. 

�  Recorded to stereo using multiple 
microphones. 

�  50-100 training hits per drum. 

¢  Parameters to vary for testing: 
�  Maximum number of templates per drum 

{0,1,30} 

¢  Result Metrics 
�  Detection accuracy: 

¢  F-Score 

�  Amplitude Fidelity 
¢  Cosine similarity S

cos

(~x,~y) =
~x ·~y

k~xkk~yk 35 



DETECTION RESULTS 
¢  Varying maximum templates per drum. 

¢  Adding tail templates helps the most. 

¢  > 1 head template helps too. 
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AUDIO EXAMPLES 
¢  100 BPM, rock, syncopated snare drum, fills/flams. 

¢  Note the messy fills in the KH=1, KT=0 version 

Original Performance 

KH=30, KT=30 

KH=1, KT=0 

37 



AUDIO EXAMPLES 
¢  181 BPM, fast rock, open hi-hat 

¢  Note the extra hi-hat notes in the KH=1, KT=0 version. 
Original Performance 

KH=30, KT=30 

KH=1, KT=0 
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AUDIO EXAMPLES 
¢  94 BPM, snare drum march, accented notes 

¢  Note the extra bass drum notes and many extra cymbals in the KH=1, KT=0 version. 

Original Performance 

KH=30, KT=30 

KH=1, KT=0 
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DRUM DETECTION SUMMARY 

¢  Drum detection front end for a complete drum 
understanding system. 

¢  Gamma Mixture Model 
�  Cheaper to train than GMM (no covariance matrix) 

�  More stable than GMM (no covariance) 

�  Allows soft clustering with perceptual Itakura-Saito distance 
in the linear domain (important for learning NVD templates). 

¢  Non-negative Vector Decomposition 

�  Greatly improved with tail templates and multiple head 
templates per drum. 

¢  Next steps 

�  Online training of templates. 

�  Training a more general model using many templates  40 
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DRUM PATTERN ANALYSIS 

¢  Desired information: 
�  What style is this? 

�  What is the meter? (4/4,3/4…) 

�  Double/half time feel? 

�  Where is the “one”? 

¢  Typical approach: 
¢  Drum pattern template correlation. 

¢  Align one or more templates with drum onsets. 43 
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¢  Modeling motion, language models, other sequences. 

¢  Models: P(v|y) 

¢  For music: 
�  P(current notes|past notes) 
�  Useful for generating drum patterns. 

 

 

¢  Used to pre-train neural network. 

¢  Intuition for drums 
�  Hidden units model the drummer’s options given the recent past. 
�  And therefore, code information about the state of the drumming. 

CONDITIONAL RESTRICTED BOLTZMANN 
MACHINE 
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TEST SETUP 
¢  173 twelve-measure sequences 

�  Recorded on Roland V-Drums 
�  33,216 beat subdivisions (16 per measure). 
�  Rock, funk, drum ‘n’ bass, metal, Brazilian rhythms. 

¢  Network configurations 
�  Each with 2 measures of context 
�  ~90,000 weights each 

�  Conditional RBM (CRBM) is a variation on the RBM  

¢  1. CRBM (3 layers) 
�  800 hidden units 

¢  2. CRBMàRBM (4 layers) 
�  600, 50 hidden units 

¢  3. CRBMàCRBM (4 layers) 
�  200, 50 hidden units 

¢  4. CRBMàCRBMàRBM (5 layers) 
�  200, 25, 25 hidden units 
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TRAINING 

¢  Training tricks 

�  L2 weight decay, momentum, dynamic learning rate. 

¢  Implementation 

�  Python with Gnumpy (numerical routines on GPU) 

�  GPU computing very important to contemporary neural 
network research. 

�  Around 30 minutes to train one model. 
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MEASURE ALIGNMENT RESULTS 
¢  3-fold cross-validated results. 

¢  Neural network models eliminate half the errors of template correlation. 

¢  Not a significant difference between NN models. 

¢  This will change with a larger, more diverse dataset. 
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QUARTER NOTE ALIGNMENT RESULTS 
¢  Can compute quarter note alignment from full measure alignment 

probabilities. 

¢  Quarter note alignment can help correct a beat tracker when it gets out of 
phase. 

¢  Again, half the errors are eliminated. 

48 



EXAMPLE OUTPUT 
¢  Label Probabilities (Red = 1, Blue = 0) 
¢  White lines denote measure boundaries 
¢  Each  column shows the probability of each label at that time. 
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EXAMPLE OUTPUT 
¢  Label Estimates (Red denotes estimate) 
¢   White lines denote measure boundaries 
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HMM FILTERING 

¢  Can use label probabilities as observation posteriors in HMM. 

¢  Assign high probability to sequential label transitions. 

¢  Models producing lower cross-entropy improve more when 
using HMM-filtering. 
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EXAMPLE OUTPUT 

¢  HMM-Filtered Label Probabilities 
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ANALYSIS OF RESULTS 

¢  Generatively pre-trained neural network models eliminate 
about half the errors compared to a baseline template 
correlation method. 

¢  HMM-filtering can be used to improve accuracy. 

¢  Overfitting present in backpropagation. 

¢  Address overfitting with: 
�  Larger dataset 

�  “Dropout” [Hinton, 2013] 

�  Many other regularization techniques 

¢  Next steps: 

�  Important next step is evaluation with much larger, more 
diverse dataset. 

�  Evaluate ability to do style, meter classification. 53 



SUMMARY 
¢  Content-Based Music Information Retrieval 

�  Mood, genre, onsets, beats, transcription, recommendation, and 
much, much more! 

�  Exciting directions include feature learning and RNNs. 

¢  Drum Detection 
�  Learn multiple templates per drum using agglomerative gamma 

mixture model training. 

�  The use of “tail” templates reduce false positives. 

¢  Drum Pattern Analysis 

�  A deep neural network can be used to make all kinds of rhythmic 
inferences. 

�  For measure alignment, reduces errors by ~50% compared to 
template correlation. 

�  Generalization can be improved using more data and 
regularization techniques during backpropagation. 
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GETTING INVOLVED IN MUSIC 
INFORMATION RETRIEVAL 

¢  Check out the proceedings of ISMIR (free online): 

�  http://www.ismir.net/ 

¢  Participate in MIREX (annual MIR eval): 

�  http://www.music-ir.org/mirex/wiki/MIREX_HOME 

¢  Join the Music-IR mailing list: 

�  http://listes.ircam.fr/wws/info/music-ir 

¢  Join the Music Information Retrieval Google Plus 
community (just started it): 

�  https://plus.google.com/communities/109771668656894350107 
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THANK YOU! 
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EXTRA SLIDES 
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• Onset Detection Function (ODF): Differentiated log-energy of 
multiple perceptual sub-bands. 

 

• Onsets are located using ODF and a dynamic, causal peak-
picking threshold. 

ONSET DETECTION 
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DRUM SEPARATION 

¢  Some Approaches to “Drum Transcription” 

�  Feature-based classification [Gouyon 2001] 

�  NMF with general drum templates [Paulus 2005] 

¢  General “average” drum templates. 

�  Match and Adapt [Yoshii 2007] 

¢  Offline, iterative 

¢  Requirements for “Drum Separation” 

�  Online/Live operation 

�  Useful with any percussion setup. 

�  Which drum is playing when?  
 And at what dynamic level? 
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GAMMA DISTRIBUTION 

¢  Mixture model is composed of gamma distributions. 

¢  The gamma distribution models the sum of k independent 
exponential distributions.   
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GAMMA MIXTURE MODEL 

¢  Multivariate Gamma (independent components): 

¢  Mixture density: p(~y|~l ,k) =
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THE EM ALGORITHM: GAMMA EDITION 

¢  E-step: (compute posteriors) 

 

¢  M-step: (update parameters)     
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AGGLOMERATIVE CLUSTERING 
¢  How many clusters to train? 

¢  We use Minimum Description Length (MDL) to choose the number of 
clusters. 
�  Negative log-likelihood  

�  + penalty term for number of clusters. 

�  1. Run EM to convergence. 

�  2. Merge the two most similar clusters. 
�  3. Repeat 1,2 until we have a single cluster. 
�  4. Choose parameter set with smallest MDL. 
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DECOMPOSING ONSETS ONTO TEMPLATES 
¢  To solve this problem (add L1 penalty): 

¢  I use the IS distance as the cost function in the above. 

�  While the IS distance is not strictly convex, in practice it is 
non-increasing under the following update rule: 
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RESTRICTED BOLTZMANN MACHINE 
¢  Stochastic autoencoder [Hinton 2006] 

�  Probabilistic graphical model 
�  Weights/biases define: 
�    

¢  Factorial conditionals: 

¢  Logistic activation probabilities 

¢  Binary units (as opposed to real-valued units) 
�  Act as a strong regularizer (prevent overfitting) 

¢  Training: maximize likelihood of data under the model 69 
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CONTRASTIVE DIVERGENCE 

¢  ML learning can be done using Gibbs 
sampling to compute samples from: 

�  The joint           

�  By taking alternating samples from: 

¢  But, this can take a very long time to 
converge. 

¢  Approximation:  
“Contrastive Divergence” [Hinton 2006] 

�  Take only a few alternating samples (k) 
for each update. (CD-k) 
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DEEP BELIEF NETWORKS  
(STACKING RBMS) 

¢  Deep Belief Network (4+ layers) 
�  Pre-train each layer as an RBM 

¢  Greedy Pre-training 

�  Train first level RBM 

�  Use real-valued hidden unit 
activations of an RBM as input to 
subsequent RBM. 

�  Train next RBM 

�  Repeat until deep enough. 

¢  Fine-Tuning 

�  After pre-training, network is 
discriminatively fine-tuned using 
backpropagation of the cross-
entropy error. 71 
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EXAMPLE HMM FILTERING 

¢  White lines denote measure boundaries. 

72 

Label
Probabilities

HMM-Filtered Label Probabilities: LCRBM-800 [test sequence 88]

Label
Probability

Classifier

HMM-
Filtered

Probabilities

HMM
Classifier

0 16 32 48 64 80 96 112 128 144
Beat subdivision [16 per measure]

Ground
Truth



EXAMPLE OUTPUT 

¢  HMM-Filtered Label Estimates 
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