
IntroductionIntroduction

Parallelizing Audio Feature Extraction
Using an Automatically-Partitioned

Streaming Dataflow Language
Eric Battenberg, Mark MurphyEric Battenberg, Mark Murphy

Eric Battenberg, eric@cnmat.berkeley.eduEric Battenberg, eric@cnmat.berkeley.edu

Mark Murphy, mjmurphy@eecs.berkeley.eduMark Murphy, mjmurphy@eecs.berkeley.edu

The StreamIt Language The StreamIt Language [1][1]

 Music information retrieval is becoming
increasingly important as the size of digital
music archives continues to grow.
 Dataflow languages can greatly improve
programmer productivity for audio
applications.
 The StreamIt compiler can automatically
partition the work described by its dataflow
code amongst multiple cores.

 Basic building blocks
Filter – like a function
Pipeline – cascade of filters
Split-Join – task-level parallelism
Feedback Loop

 C-like syntax
 Explicit input-output size definitions for
buffering constraints

The StreamIt CompilerThe StreamIt Compiler

1. Fuse Stateless filters
Eliminates communication and buffer copies

2. Data-Parallelize
Allows for concurrent execution of future work

3. Pipeline
Optimal partitioning of the work using dynamic propramming

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

frequency [Hz}

m
ag

ni
tu

de
 re

sp
on

se

16point DFT

 Frequency-warped spectrum [3,4]
•Human ear has better spectral resolution at lower frequencies
•Sufficient spectral resolution achieved with 1024 point FFT

(~23ms window).
•With frequency warping, only need 32 point window

(~1ms window)

�

 Allows finer time resolution
•Improves analysis of rhythmic patterns and fast transients

 Comes with a significant performance cost
•Warping is achieved using an IIR all-pass chain
•Over 10x slower than MFCC extraction in Matlab

Audio Feature ExtractionAudio Feature Extraction

ResultsResults

Where's the Performance?Where's the Performance?

ReferencesReferences

ConclusionsConclusions

Coarsen
Granularity

Data
Parallelize

Software
Pipeline

 This scheme achieves close to 14x
speedup on the 16 cores of MIT's Raw
architecture for common signal processing
tasks [2]

 Warped spectrum code tested on Clovertown,
Opteron, Niagara2, Core 2 Duo Penryn

Both fine-grained and coarse-grained
implementations

 Almost non-existent speedup beyond two cores on
Clovertown and Opteron. [Fig 3]

Portability problems with Java VM on Niagara2

 Moderate speedup for coarse-grained version on 2
Penryn cores. [Fig 1]

No speedup for fine-grained version on Penryn.

Single core fine-grained performance was best
considering all implementations and any number of
cores. [Fig 2]

Fig 1: Results for coarse-grained version on Penryn

Fig 2: Results for various implementations on Penryn

Fig 3: Speedup for coarse-grained version on
Clovertown/Opteron

Best performance seen in single core.
Where is the speedup on x86
architectures?
It seems that the StreamIt compiler is
tailored to the Raw architecture
Does it overlook:

cache hierarchy,
communication costs,
autotuning?

 Dataflow languages like StreamIt can significantly increase
programmer productivity for audio applications.
 The StreamIt compiler achieves good uniprocessor performance
with relatively little programmer effort.
 Multicore performance is severely lacking for x86 architectures.
 Different strategies need to be employed to bring StreamIt up to
speed on more widespread architectures.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

frequency [Hz}

m
ag

ni
tu

de
 re

sp
on

se

16point Warped Delay Line DFT

Example StreamIt code for a
downsampler “filter”.

Basic StreamIt constructs

1) W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A Language for Streaming Applications. International Conference on
Compiler Construction, 4, 2002.

2) M. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task, data, and pipeline parallelism in stream programs.
Proceedings of the 12th international conference on Architectural support for programming languages and operating systems, pages
151–162, 2006

3) J. Smith III and J. Abel. Bark and ERB bilinear transforms. Speech and Audio Processing, IEEE Transactions on, 7(6):697–708,
1999.

4) C. Braccini and A. Oppenheim. Unequal bandwidth spectral analysis using digital frequency warping. Acoustics, Speech, and Signal
Processing, IEEE Transactions on, 22(4):236–244, 1974.

	Slide 1

