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Sparse Signal Representation: Image Compression
using Sparse Bayesian Learning
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I. INTRODUCTION AND MOTIVATION

In this paper we investigate methods of finding sparse
representations of a signal t = [t1, . . . , tN ]T , i.e. represen-
tations with the fewest non-zero coefficients. We assume that
t has a sparse representation in some possibly over-complete
dictionary of basis functions Φ. We represent the signal as

t = Φw + ε (1)

with Φ ∈ RN×M , M ≥ N , and some noise ε. The challenge
is to determine the sparsest representation of reconstruction
coefficients w = [w1, . . . , wM ]T .

Finding a sparse representation of a signal in an over-
complete dictionary is equivalent to solving a regularized
linear inverse. For a given dictionary Φ, finding the maximally
sparse w is an NP-hard problem [1]. A great deal of recent
research has focused on computationally feasible methods
for determining highly sparse representations and is fueled
by applications in signal processing, compression and feature
extraction [2].

In section II of this paper we formulate the problem of
finding a sparse inverse solution. In section III we give an
overview of several popular techniques: Method of Frames
(MOF), Matching Pursuits (MP), Basis Pursuit (BP), Focal
Underdetermined System Solution (FOCUSS), and Sparse
Bayesian Learning (SBL). We give a general comparison
of problems solved by each method and the strengths and
weaknesses of each approach. In sections IV and V we apply
these techniques to two applications: image compression and
medical image reconstruction. Each application highlights one
of the two goals of sparse signal representation: sparsity and
hyper-resolution.

A. Sparsity: Image Compression

We can define the sparsity of a signal D(t) ≈ ||t||0 as
the number of significant coefficients, i.e. coefficients whose
values will not be quantized to zero. The goal of compression
is to find a representation of w such that D(w) < D(t). For
images we consider 1D representations in RN where N is the
product of the image dimensions. Compression is paramount to
the usability of image and video signals, but the computational
complexity of the sparse basis selection methods has severely
limited the size of the signals that can be compressed. In this
paper we apply BP, MP, and SBL to images up to 32x32
(N = 1024) using over-complete dictionaries consisting of
either the DCT or a steerable pyramid.

B. Hyper Resolution: MEG Reconstruction

If we view t as some sampled version of w then we can
consider finding w as an interpolation, i.e. we are increasing
the resolution of our signal. Since this is an under-constrained
problem we must use a priori knowledge of w to choose from
the infinite number of solutions. If we know that w is sparse
we can try to reconstruct it with a high resolution. In this paper
we present MOF, MP, and SBL applied to the inverse problem
in magnetoencaphalography (MEG) where our signal is a 1D
representation of 4D signal (3D location in space over time).
At each point in time the electric currents at 9,981 locations
on the surface of the brain are determined by 273 magnetic
sensors located on the surface of the head.

II. PROBLEM FORMULATION

If we assume some sparsity inducing objective function
D(w) (not necessarily the L0 norm) then our constrained
linear inverse takes on the following form

w = arg min
w
||t− Φw||2 + λD(w) (2)

where λ is a tradeoff between sparsity and reconstruction error.
In much of our analysis in this paper we will look at the zero
noise case (λ → 0). The problem then becomes

w = arg min
w

D(w) s.t. t = Φw. (3)

In the next few sections we discuss the choices we must make
in D(·) and Φ and show how to represent the solution as a
weighted pseudo-inverse.

A. Sparsity Measure

Ideally we want to choose the L0 norm as a measure of our
sparsity. That is

D(w) =
M∑
i=l

1(|wi| 6= 0) (4)

where 1(·) is the indicator function. Unfortunately, since
finding the maximally sparse solution is NP-hard we will see
that many techniques try instead to minimize the Lp norm
defined as

D(w) =

(
M∑
i=l

|wi|p
)1/p

. (5)

The authors of [3] argue that a smaller value of p leads to
more sparse solutions. We offer the following intuition. For
p < 1 the know that the slope of |wi|p is steepest for values of
wi whose magnitude are near zero. Accordingly the penalty is
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given more to the number of wi 6≈ 0 rather than the magnitude
of wi. This results in a large number of coefficients with
negligible values.

B. Dictionary Selection

Dictionary selection directly affects our ability to represent
the signals. When implementing each of the algorithms dis-
cussed, it is sensible to choose an overcomplete dictionary
Φ ∈ RN×M that will give the sparsest set of reconstruction
coefficients while maintaining an accurate representation of the
original signal. Possible dictionaries include wavelet dictionar-
ies, Gabor dictionaries, cosine packets, and chirplets. Another
possible choice is that of the steerable pyramid, which is a
multi-scale, multi-orientation set of basis functions that closely
resembles wavelets.

According to [3], choosing a random dictionary can provide
an unbiased means of comparing various basis selection algo-
rithms. By random, we mean that the entries of Φ are selected
from a standard Gaussian distribution. Since our goal is sparse
image coding, it is best to pick a dictionary that can represent
natural images effectively.

While dictionary learning algorithms do exist and random
dictionaries may be useful, in this paper, we focus on using a
predetermined set of basis functions.

C. Weighted Pseudo-Inverse

For an over-complete dictionary Φ we can construct the
pseudo-inverse solution as

w =
(
ΦT Φ

)−1
ΦT t = (Φ)†t. (6)

This solution is referred to as method of frames (MOF) and
results in the reconstruction with the minimum L2 norm. As
discussed, such solutions are known to have very poor sparsity.

We can also represent all possible solutions in terms of a
weighted pseudo-inverse. For any matrices G ∈ RM×M , G‡ ∈
RM×M such that

GG‡ = Iw (7)

where Iw is a diagonal matrix with ones at every diagonal
element corresponding to a non-zero element in w, we can
equivalently show

t = Φw = (ΦG)(G‡w) (8)

w = G (ΦG)† t. (9)

This allows us to represent the problem as choosing G such
that it satisfies (7) and minimizes D(w). We will find a
description of the weight matrix G imposed by several of the
methods we discuss and use it as a means of comparison.

III. OVERVIEW OF TECHNIQUES

In this section we describe some of the recent techniques
used in sparse signal reconstruction: MP, BP, FOCUSS, and
SBL. At the end, we give a general comparison of all methods.

A. Matching Pursuits

Matching pursuits [4] is a greedy algorithm that attempts to
identify the bases that “match” the signal best, i.e. are most
correlated with the signal. Reconstruction coefficients are built
one at a time by first initializing w(0) = 0 and then iterating
for K steps

ik = arg max
i

< (t− Φw(k)), φi > (10)

wik
=< (t− Φw(k)), φik

> (11)

where ik corresponds to the best matching basis at each
iteration.

It is important to note that for non-orthogonal dictionaries
(i.e. any over-complete dictionary) the algorithm may revisit
the same basis function φi multiple times. This occurs when
the use of another basis function φj , j 6= i projects the error
back into the dimension of φi. Accordingly the number of
basis functions used after K iterations is L ≤ K. After K
iterations we know that, by construction, at least M − K
coefficients in w are zero. A sparse representation is found
if the error becomes sufficiently small for L < N .

For over-complete dictionaries the method runs into diffi-
culties if it makes an error on an initial choice of basis and
wastes subsequent iterations trying to correct the error. Also,
the algorithm can become hampered by revisiting the same
basis functions multiple times.

We can recast MP as an iterative inverse problem of the
form

w = ḠT ΦT t (12)

with Ḡ ∈ RM×M . Without loss of generality we may assume
that the bases are numbered in the same order that they are
included in the solution by matching pursuits. Then we know
that after k iterations Ḡ(k) is of the form

Ḡ(k) =

Ḡ
(k)
L · · · 0
...

. . .
...

0 · · · 0

 (13)

where Ḡ
(k)
L ∈ RL(k)×L(k)

consists of a series of weighted
projections. At the kth iteration only the ithk column of Ḡ

(k)
L

is updated via

ḡ
(k)
ik

= ḡ
(k−1)
ik

+ eik
−

L(k)∑
j=0

< φik
, φj > ḡ

(k−1)
j (14)

where eik
is the ithk column of the identity matrix. We note

that L is the number of basis selected by the algorithm. If a
new basis is used L is incremented by one; if a previous basis
is revisited L stays the same.

It is interesting to observe what occurs if we find a zero
error solution with L < M non-zero coefficients. We present
the following theorem where wL corresponds to the non-
zero elements of a solution w found using MP and ΦL =
[φ1, · · · , φL]..

Theorem 3.1: If wL ∈ RL with L < M has zero re-
construction error, then it is the minimum L2 solution of
t = ΦLwL
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Proof: If we have zero reconstruction error we know that
any subsequent updates will not alter Ḡ. This means that for
any column i we have

ḡi = ḡi + ei −
L∑

j=1

< φi, φj > ḡj (15)

ei =
L∑

j=1

< φi, φj > ḡj . (16)

Writing the equation out in matrix form gives us

IL = ḠΦT
LΦL (17)

Ḡ =
(
ΦT

LΦL

)−1
(18)

wL =
(
ΦT

LΦL

)−1
ΦLt (19)

In light of theorem 3.1 we can see that in the case of zero
reconstruction error the the weight matrix G from equation 9
is of the form

G =

IL · · · 0
...

. . .
...

0 · · · 0

 . (20)

Thus the weight matrix simply selects L basis functions to use
in a pseudo-inverse solution.

B. Basis Pursuit

Basis Pursuit, developed by [2], uses methods in linear
programing (LP) to find an optimal solution to a constrained
linear inverse (3) when the constraint is the L1 norm, i.e.
D(w) = ||w||1. As we saw previously, the L2 norm used in
MOF led to a quadratic optimization with linear equality con-
straints. The L1 norm is a convex nonquadratic optimization
problem given explicitly as

min
w
||w||1 s.t. t = Φw (21)

The standard LP formalization for a variable x ∈ RL is

min
x

cT x s.t. b = Ax, x ≥ 0 (22)

where cT x specifies the objective function, A and b specify
equality constraints, and the additional boundary constraint
x ≥ 0 is imposed. To show that the two problems are
equivalent we write w = wpos + wneg where

wpos
i =

{
wi if wi ≥ 0
0 if wi < 0

(23)

and wneg is likewise defined for the negative values of w.
Then we can write the L1 norm as an inner product between
cT = [1,1]T and xT = [wpos,−wneg]T . With A = [Φ,−Φ]
the problem becomes

min
w

[1,1]
[

wpos

−wneg

]
s.t. t = [Φ,−Φ]

[
wpos

−wneg

]
,

[
wpos

−wneg

]
≥ 0

(24)
Once this connection has been established BP can be imple-

mented using some of the sophisticated methods developed in
LP. Two highly efficient methods are the simplex algorithm

and the interior-point method [2]. These methods find the
global minimum and can take advantage of dictionaries with
fast implicit algorithms.

C. FOCUSS

The FOCUSS algorithm [1] is formulated implicitly as
a recursive weighted minimum norm of the form in (9).
Although several variations have been studied, the basic form
updates a diagonal weight matrix G = diag(g) at every
step based on the previous weight matrix and reconstruction
coefficients. Two possible update rules are

g
(k)
i = w

(k−1)
i (25)

and

g
(k)
i = g

(k−1)
i w

(k−1)
i . (26)

According to [1], experimentation showed that the later for-
malization had faster convergence times and was more faithful
to the initialization.

Because the algorithm does not have the nice convex
properties of the SBL model, the choice of initial weights
is critical to the sparsity of the solution. A poor initialization
can result in the algorithm getting stuck in a very non-sparse
local minimum. A common choice for the initial weights is
min L2 solution.

D. Sparse Bayesian Learning

Sparse Bayesian Learning takes advantage of the properties
of Gaussian probability distributions to develop a convergent
recursive method of finding a sparse w. In this section we
describe the methodology developed in [5] following the
general presentation given in [3].

We are trying to solve equation (1) and begin by making
the assumption that that the noise is i.i.d. Gaussian with some
variance σ2 (possibly unknown), i.e. ε ∼ N (0, σ2I). Thus the
conditional distribution of t can be written as.

p(t|w;σ2) = (2πσ2)−
N
2 exp

(
− 1

2σ2
‖t− Φw‖2

)
(27)

For a given σ2, the ML rule for selecting w is given by

wML = arg max
w

p(w|t;σ2) (28)

= arg max
w

p(t|w;σ2) (ML) (29)

= arg min
w
‖t− Φw‖2. (30)

Unfortunately, the ML rule is still under-constrained. We can
use the non-sparsity inducing minimum L2 solutions. We
instead endeavor to use the MAP rule of the form

wMAP = arg max
w

p(w|t;σ2) (31)

= arg max
w

p(t|w;σ2)p(w) (MAP). (32)

Here we must know the prior p(w). SBL assumes a parametric
form of the prior p(w;γ) ∼ N (0,Γ) with Γ = diag(γ) and
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γ = [γ0, · · · , γM ], where the hyper-paremter γi is the variance
of wi.

p(w;γ) =
M∏
i=1

(2πγi)−
1
2 exp

(
w2

i

2γi

)
(33)

It is important to note here that this zero mean independent
prior does not necessarily reflect the true nature of our ideal
w, but is an assumption we make to gain computational
feasibility. Due to the Gaussian nature of the distributions we
can calculate the pdf of t as

p(t;σ2,γ) =
∫

p(t|w;σ2)p(w;γ)dw (34)

= (2π)−
N
2 |Σt|−

1
2 exp

[
−1

2
tT Σ−1

t t

]
(35)

= N (0,Σt) (36)

where
Σt = σ2I + ΦΓΦT . (37)

Ideally we want to choose parameters (σ2
ML,γML) that maxi-

mize the probability of p(t;σ2,γ). Unfortunately this problem,
referred to as type-II maximum likelihood [5], does not have a
simple solution. We will show shortly how we iteratively learn
the most likely model parameters along with our optimal w.

Now that we have defined all the necessary probability
functions in terms of fixed parameters σ2 and γ we can write
the conditional probability of w given t as

p(w|t;σ2,γ) =
p(t;σ2)p(w;γ)

p(t;σ2,γ)
(38)

= N (µ,Σw) (39)

with
µ = σ−2ΣwΦT t (40)

Σw = (σ−2ΦT Φ + Γ−1)−1 (41)

At this point we have a description of our probability
model (σ2,γ) and a probability of w conditioned on our
assumed model and the observed signal t. We employ the
iterative Expectation-Maximization (EM) algorithm to find the
best choices of (w, σ2,γ) given t. The two steps of the EM
algorithm are outlined below.

E-step: We use the MAP rule to update our estimate of
w(k) based on our model parameters (σ2,γ). Since the
conditional probability is a Gaussian, the MAP rule is
simply the mean.

w(k) = arg max
w

p(w|t; (σ2)(k),γ(k)) (42)

= µ(k) (43)

M-step: We use the ML rule to update our new model pa-
rameters ((σ2)(k+1),γ(k+1)). Although we have defined
p(t;σ2,γ) in (34), it is insufficient to find (σ2

ML,γML).
To make the problem solvable we assume that our current
guess w(k) is correct, .i.e. we treat w as hidden variables
in our problem, and then maximize the parameters over

the complete data {t,w(k)}. We use p(t,w;σ2,γ) =
p(t|w;σ2)p(w;γ) and then compute

γ
(k+1)
i = arg max

γi

p(t,w(k);σ2,γ) (44)

= (Σw(k))i,i + (µ(k)
i )2 (45)

and

(σ2)(k+1) = arg max
σ2

p(t,w(k);σ2,γ) (46)

=
||t− Φµ(k)||2 + (σ2)(k)

M∑
i=1

[
1− (Σw(k))i,i/γ

(k)
i

]
N

.

(47)

In [3] a variational formulation of the SBL method is used
to show why sparse solutions are encouraged. We offer the
following intuition: The solution is naturally sparse because
we assume a zero mean prior for each wi. There must be strong
conditional evidence for non-zero wi in (38) to overcome the
prior (33) in the MAP estimate. It is also apparent that wi → 0
as γi → 0.

We can also write the updates for SBL in the form of the
weighted pseudo-inverse. If we let G = Γ1/2 then we can
represent the M step by the weighted pseudo-inverse (9) and
the weight updates by

g
(k)
i =

√
(Σw)i,i + w2

i (48)

with
Σw =

(
ΦT Φ + (GT G)−1

)−1
. (49)

E. Comparison of Techniques

All of the techniques we have presented must make some
compromises in order to find a tractable solution to the
constrained linear inverse. In the following we highlight the
assumptions and constraint modifications used.
Use Parametric Solutions: SBL drastically simplifies the

search of a sparse w by assuming a probabilistic model
of the data and using the EM algorithm to learn to the
parameters along with the MAP w.

Alter the Sparsity Constraint: Some methods relax the L0

sparsity constraint by allowing D(·) to be the Lp norm.
With p = 1 the constraint is the L1 norm and as p → 0
the constraint approaches the L0 norm. Methods which
use this constraint have no guarantee of being maximally
sparse but gain ease and/or optimality (with respect to
D(·)) of implementation. BP is able to optimally solve
the L1 norm constraint and FOCUSS uses a recursive,
non-optimal method for solving the generalized constraint
for p ∈ (0, 1].

Use a Heuristic: MP is an example of using a heuristic to
greatly reduce complexity of implementation. As dis-
cussed, it is a bottom-up approach which has very low
probability of being maximally sparse but can elegantly
provide a balance between high sparsity and reconstruc-
tion error with very little computation.

In Table I we present several of the properties of the
discussed methods. One important issue in evaluating a tech-
nique is how well it converges within its own framework, i.e.
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TABLE I
COMPARISON OF TECHNIQUES

Method D(w) Globally Converg.a Maximally Sparseb Complexity / Iteration Iterations Complexity
MOF L2 yes no medium one very low
MP L2 no no low many low
BP L1 yes no medium NA medium
FOCUSS Lp no no medium NA medium
SBL L0 no yes high few high

aGlobally convergent with respect to the chosen model
bMaximally sparse at the global minimum

with respect to its assumptions and choice of constraint. Of
the algorithms presented only BP can guarantee that it will
not become stuck in local minima. The FOCUSS algorithm,
assuming a good initialization, is more likely to be convergent
when p = 1 and loses optimality as p → 0. Between SBL and
FOCUSS (with a small value of p) experiments have shown
that SBL is far less likely to be caught in a local minima [3].

Another important issue is if the global minimum of the
technique corresponds to one of the maximally sparse solu-
tions (the solution may not be unique). The quality depends
on the norm being minimized and only SBL can guarantee a
maximally sparse solution at its global minima. Consequently
any errors made by SBL are a result of becoming stuck in
local minima.

Finally it is important to consider the affects of parametric
methods. When we assume a particular parametric model to
find our solution we may be deviated from the true nature of
our data. This is a major limitation of SBL and the variations
of FOCUSS.

Although we try to provide a general feeling for the
complexity of the various methods more quantitative analysis
requires investigating the details of implementation, such as
dictionary and method formulations, as well as the properties
of the signals. We will present more specific comparisons in
our application sections).

IV. APPLICATION I: IMAGE COMPRESSION

One of our objectives is to represent natural images with
as few non-zero coefficients wi as possible. We want to
choose the optimal over-complete dictionary and algorithm
that will achieve this goal. Additionally, we should acheive
better performance than when using the optimal method with
a complete dictionary.

A. Steerable Pyramid Dictionary

Steerable pyramids are used in several computer vision
applications and in noise removal and enhancement tech-
niques in image processing. Applying the steerable pyramid
transform to an image decomposes the image into several
unaliased subbands. Two useful properties of the steerable
pyramid are its translation-invariance and rotation-invariance.
This simply means that as a given image is translated or rotated
in space, the information represented within each subband
remains in that subband. The “steerable” name is derived from
this rotation-invariance property [6]. Such a decomposition

technique is very efficient when representing natural images,
making the steerable pyramid basis functions a good dictionary
choice. Since these basis functions are directional derivatives,
each can be viewed as a translated, scaled, and rotated version
of a single kernel.

The steerable pyramid transform is a multi-scale, multi-
orientation decomposition. The transform can be represented
as a series of filter banks. First an image is decomposed
into a residual highpass subband and a lowpass subband. The
lowpass subband is then divided into k bandpass subbands
and a residual lowpass subband, where each subband repre-
sents a certain orientation. The residual lowpass subband is
subsampled by a factor of 2 in both the x and y directions and
then divided into another set of k orientation subbands and
a lowpass band, and the process continues recursively. The
number of orientation subbands k is equal to one more than
the order of the directional derivative used. Thus, a set of third
order directional derivatives will create four subbands.

In our filter bank, let us refer to the initial high pass filter as
H0(ω) and the initial low pass filter as L0(ω). As mentioned
earlier, the image passed through L0(ω) is then passed through
a set of bandpass filters, Bk(ω), and a low pass filter, L1(ω).
We can write the Fourier magnitude of Bk(ω) in terms of an
angular component, A(θ) and a radial one, B(ω):

Bk(~ω) = A(θ − θk)B(ω) (50)

where θ = tan−1(ωy/ωx), θk = 2π/k, and ω = |~ω|.
The angular component can be described by the formula
A(θ) = cos(θ)n, where n indicates the order of the directional
derivative used. Using the notation above, there are three
constraints we must impose:

L1(ω) = 0 for |ω| > π/2 (51)

|H0(ω)|2 + |L0(ω)|2 [|L1(ω)|2 + |B(ω)|2] = 1 (52)

|L1(ω/2)|2 = |L1(ω/2)|2 [|L1(ω)|2 + |B(ω)|2]. (53)

These constraints ensure that no aliasing takes place when
subsampling, that the system response is unity, and that the
recursive process can occur [7].

1) Example: Decomposing a 128×128 pixel image: A
128×128 bitmap image of a white circle on a gray background
was decomposed into 2 pyramid levels and 4 subbands using
Matlab code obtained from [8]. This can be seen in Figure
1(a). Figure 1(b) shows the residual high pass information
along with the four orientation bands at the finest scale, or
first pyramid level(128×128 pixels). Figure 1(c) shows the



CLASS PROJECT FOR EE225B (SPRING 2006), UNIVERSITY OF CALIFORNIA-BERKELEY 6

(a)

(b)

(c)

(d)

Fig. 1. Steerable Pyramid Decomposition

four orientation bands at the second pyramid level (64×64
pixels) while Figure 1(d) shows the residual subsampled low
pass information (32×32 pixels).

2) Building a Set of Steerable Pyramid Basis Functions:
The size of a dictionary of steerable pyramid basis functions
depends on the number of scales and orientations desired. To
create a dictionary of c basis functions for an r × r image,
we can create a c× 1 vector, where each element represents a
single pixel within all subbands of the image decomposition.
We can generate one basis function by creating an impulse
within this vector and then reconstructing an r × r matrix
with this impulse, using a Matlab function obtained from [8].
By repeating the process for all elements within the vector, an
r2×c matrix Φ is created, where each column in Φ represents
one basis function within the dictionary.

B. Implementation

Implementing the SBL algorithm using the steerable pyra-
mid dictionary required large matrix multiplications and in-
versions. We performed these matrix calculations using the
CLAPACK (Linear Algebra Package for C) and ATLAS (Au-
tomatically Tuned Linear Algebra Software) software pack-
ages. These packages included BLAS (Basic Linear Algebra
Subprograms) subroutines that performed optimal calculations
for various types of matrices.

The SBL algorithm was run on the PSI Fast Storage Cluster
here at the University of California at Berkeley. All nodes and
frontends on the cluster contained dual 3.0 GHz Pentium 4
Xeon chips and 3 GB of RAM. Within our implementation
of the SBL algorithm, matrix storage was O(M2) and matrix
multiplication was O(M3). Memory issues were encountered
for a 64×64 image with a 4.8 times overcomplete dictionary,
which contained 2 scales and 4 orientation subbands. 700 MB

were required to store the dictionary while all matrices used
in the algorithm required more than 5.3 GB of RAM. When
performing the algorithm on a 32 × 32 image, only 340 MB
of RAM were required to store all matrices. Looking at the
computation time, each SBL iteration on a 32×32 image took
approximately 13 seconds. We estimate that one iteration on
a 64 × 64 image would take approximately 830 seconds. As
a result of the memory and computational issues, the largest
image on which SBL was performed was 48x48 pixels.

C. Results

We performed a series of experiments on three 32×32 pixel
images, which we called lena100-32, einstein32, and firefox32.
The Lena image was originally 512× 512 pixels; however, it
was downsampled to 100×100 and then cropped. The Einstein
image we used was simply a cropped version of a 256× 256
pixel image of Einstein and the Firefox logo was originally
32× 32.

In our first experiment, we ran 50 iterations of SBL on
the einstein32 image using a 4.8 times overcomplete steerable
pyramid dictionary (2 scales and 4 orientations) and a 4 times
overcomplete DCT dictionary. We then retained only the most
significant n coefficients, where n varied from 10 to 1020,
with a step size of 10. The mean squared error corresponding
to the reconstructed image was taken for each step size. A
graph of the MSE versus the number of retained coefficients
can be seen in Figure 2. We also used a complete DCT
dictionary as a baseline. Since that dictionary is complete, the
coefficients were computed using w = Φ−1t. The steerable
pyramid dictionary performed better when between 200 and
600 coefficients were retained. Figure 3 shows the original
Lena image along with reconstructed versions using the two
dictionaries when 250 coefficients were retained. The image
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Fig. 2. Comparison of Dictionaries

(a) (b) (c)
Fig. 3. Lena100-32: (a) Original, (b) SBL with StPyr, (c) SBL with 4x OC
DCT

Fig. 4. Comparison of Methods on lena100-32.bmp

(a) (b) (c)
Fig. 5. Lena100-32: (a) Original, (b) SBL, (c) Basis Pursuit

Fig. 6. Comparison of Methods on einstein32.bmp

(a) (b) (c)
Fig. 7. Einstein32: (a) Original, (b) SBL, (c) Basis Pursuit

Fig. 8. Comparison of Methods on firefox32.bmp

(a) (b) (c)
Fig. 9. Firefox32: (a) Original, (b) SBL, (c) Basis Pursuit
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reconstructed with the steerable pyramid is clearer and less
speckled than the one reconstructed with the overcomplete
DCT. While these results are not conclusive evidence that the
steerable pyramid is the optimal set of basis functions to use,
they do validate our dictionary choice.

We then performed three separate basis selection methods
(SBL, Matching Pursuits, and Basis Pursuit) using the steer-
able pyramid dictionary on the Lena image. We performed
50 iterations of SBL, 5000 iterations of Matching Pursuit,
and approximately 15 iterations of Basis Pursuit. As in the
experiment mentioned before, we then found the mean squared
error corresponding to a certain number of coefficients selected
by each method. As a baseline, the performance of the DCT is
shown in Figure 4 as well. It is clear that SBL peformed better
than all methods when using a sufficiently sparse coefficient
vector. Similarly to the previous experiment we show the
reconstructed Lena image in Figure 5 using 250 coefficients
selected by SBL and Basis Pursuit. One can see that with Basis
Pursuit, the image is more blurred and Lena’s left eye, nose,
and lips are less defined.

The same experiments were performed on the Einstein
image and on the Firefox image. As shown in Figures 6 and
8, SBL outperformed the other methods in the areas where a
sparse solution would be obtained. Although the reconstructed
images using 250 coefficients for SBL and Basis Pursuit are
similar for the Einstein image in Figure 7, BP had an MSE of
39.26 while the MSE using SBL was 26.32. It is interesting to
note that SBL outperformed the other methods for a synthetic
image, the Firefox logo, when approximately 100 to 600
coefficients were retained. We can conclude from these results
that SBL gives a more accurate representation of an image
when a sparse solution is required.

V. APPLICATION II: MEG RECONSTRUCTION

Magnetoencephalography (MEG) and electroencephalogra-
phy (EEG) are non-invase brain image techniques that attempt
to measure brain activation in the cerebral cortex. Both meth-
ods have very high temporal resolution compared to other
brain imaging techniques but suffer greatly in spatial resolution
as a result of limited spatial sampling; activation at 10,000
locations in the brain must be recovered from only 275 sensor
placed on the surface of the scalp [10]. Although MEG is
technically more challenging to implement than EEG, it has
shown a much greater robustness to noise. As a consequence
much research has focused on recovering the locations of brain
activation from MEG measurments. In this section we present
a novel application of SBL to the MEG inverse problem.

The unconstrained nature of MEG reconstruction necessi-
tates some form of regularization. Currently studied inverse
methods attempt to use prior knowledge of brain activation
characteristics to create a convex solution space. According
to [1], brain activation appears to consist of localized energy
sources, i.e. the activity is “often limited in spatial extent, but
otherwise is distributed over arbitrarily shaped areas.” Thus
much research has looked for solutions that are somehow
sparse in nature.

A. Forward Model

A primary assumption of neuroimaging is that electric
currents correspond directly to brain activation. The first
step in using MEG is to create a forward model of how
these currents in the brain are mapped to the magnetic fields
recorded at the sensors. The physics of electromagnetic waves
as summarized by Maxwell’s equations dictate the magnetic
field b(r) anywhere in space and a function of a primary
current i(r) where r is a location vector. Assuming that the
conductivity in the head is known, a linear representation of
the mapping can be found using a quasi-static approximation
of Maxwell’s equations and superposition [9]. A great deal
of work has gone into developing elaborate multilevel head
conductivity models that account for differences in skin, skull,
CSF, and brain tissue [10].

We will denote samples of b(r) as t ∈ RN where N is the
number of sensors, and samples of i(r) as w ∈ RM where
M is the number of location in our model of the brian. We
assume that M >> N ; in this study M = 9981 and N = 73.
The matrix Φ ∈ RN×M is the approximate linear mapping
from w to t. We represent the forward model as equation (1).

B. Inverse Calculation

If we accept the validity of our forward model, calculating
the brain currents w is an under-constrained linear inverse
as described in section II.A general overview of methods
for MEG is given in [10]. The authors present the linearly
constrained minimum variance (LCMV) beamformer and the
multiple signal classification (MUSIC) algorithms as well
as the Tikhonov regularized version of the pseudo inverse
(TR). In [1], a method called Focal Underdetermined System
Solution, (FOCUSS) is used with very low resolution brain
models, and in [9], a method called Best Orthogonal Basis
is applied to more sophisticated brain models with limited
success. In this paper we present novel application SBL to the
MEG inverse problem using the same models as [10],[9].

C. Results

We tested SBL following the general evaluation procedure
described in [10]. We constructed a synthetic test current w
consisting of two patches of current, one positve and one
negative. Both had magnitude one and consisted of eight
contiguous locations. We created the corresponding measure-
ment t using the forward model with zero noise, and tried to
recover w from t using MOF, MP, and SBL. All methods were
implemented using the programs and platforms described in
section IV-B and we found that the initialization parameters
which led to fastest convergence were (σ ≈ 10−5, γ ≈ 10−2).

The results, denoted wMOF , wMP , and wSBL are shown in
Figure 10 on a smoothed cortical surface. We see that wMOF

is highly distributed over the brain and does not correspond
to w. Although wMP is a very sparse signal it too fails to
resemble w. Only wSBL shows the two patches along with
the addition of a third negative spot near the original positive
patch.

Although SBL is clearly the most faithful reconstruction
of the original current, the mean squared errors (MSE) of the
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Fig. 10. Cortical brain activation for original current (a) and reconstructed currents using MOF (b), MP (c), and SBL with 50 iterations (d). White indicates
positive and black negative. The amplitudes for MOF and MP have been greatly amplified to allow visualization; SBL 50 is shown on the same scale as the
original signal.

reconstructed signals does not show significant differences be-
tween the rmethods. To analyze the signals we treat the patches
of current as targets. For each location in the brain we want
to determine, using some decision rule and our reconstructed
brain current, whether or not that location corresponds to a
non-zero current in the original brain. We can an achieve this
by thresholding the magnitude of the reconstructed currents
using a given threshold T . We evaluate our target detection
using the receiver operating characteristic (ROC) [10]. The
ROC presents the the ratio of true positives (TP) versus false
positives (FP) over all decisions rules (In our case over all
thresholds T ). A high ratio indicates good detection and the
ROC allows us to compare methods over the full range of FP
penalties.

In Figure 11 we present the ROC for SBL with different
numbers of iterations. Performance is low after only two
iterations but is near optimal after only ten. We see that
stopping at 50 iterations gives the best performance in the
high FP region, and continuing to 100 iterations gives the best
performance in the low FP regions. This occurs because as
SBL continues to converge, the results become more sparse,
and very few positives will be identified.

Fig. 11. FROC curves for different iterations of SBL with 16 total targets.

In Figure 12 we compare the two best SBL implementations
against MOF. As we suspected SBL greatly outperforms MOF
over the entire curve. We do not show MP because it fails to

locate any of the 16 TPs at any threshold.

Fig. 12. FROC curves for SBL and MOF with 16 total targets.

Our results show that SBL can be applied to the MEG in-
verse problem. Future analysis of SBL should study the affects
of additive noise in the inverse model, analyze the results over
a large number of test signals, and compare its performance
against other state-of-the art localization techniques such as
TR, MUSIC and LCMV. As real data becomes available more
substantial claims can be made as to the appropriateness of
any of these methods.

Additionally, it would be beneficial to apply SBL to multiple
images over time. Although this is initially a daunting under-
taking due the computational complexity, it may be feasible
with a recursive implementation. For each time SBL provides
both the reconstructed current as well as model parameters.
It seems logical to exploit the correlation in time of the
model to jump-start the implementation at a subsequent time.
Additionally, a multi-scale approach could could allow faster
implementation by isolating reconstructed brain currents to
some subset of locations.

VI. CONCLUDING REMARKS

Indeed, the Sparse Bayesian Learning algorithm arrived at
very sparse representations of our test signals. Coupled with



CLASS PROJECT FOR EE225B (SPRING 2006), UNIVERSITY OF CALIFORNIA-BERKELEY 10

the Steerable Pyramid dictionary, it performed better than all
other basis selection algorithms in our image compression
trials, for both natural and synthetic images. SBL was also
highly successful at reconstructing source locations from MEG
measurements. The main drawback of this algorithm is its
computational complexity, an issue which has kept us from
testing our implementation on images of significant size. Since
the effectiveness of the algorithm has already been demon-
strated, the next step is to improve the implementation of SBL
by incorporating fast dictionaries, the pruning of unnecessary
basis functions between iterations, and other tricks to make its
widespread use more feasible.
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