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TOWARD COMPREHENSIVE RHYTHMIC 
UNDERSTANDING 

  Or “Live Drum Understanding” 
  Goal: Go beyond simple beat tracking and provide 

context-aware, instrument-aware information in real-
time, e.g. 
  “This rhythm is in 5/4 time” 
  “This drummer is playing syncopated notes on the hi-hat” 
  “The ride cymbal pattern has a swing feel” 
  “This is a Samba rhythm” 
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LIVE DRUM UNDERSTANDING SYSTEM 
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• This work. 

• Gamma Mixture Model 
training of drum templates 

• Non-negative decomposition 
onto templates. 

• HMM-based 
multi-hypothesis  
beat tracking. 

• Statistical deep learning of 
drum patterns  

• Stacked Conditional Restricted 
Boltzmann Machines 

✓ ✓ 
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REQUIREMENTS FOR DRUM SEPARATION 

 Real-Time/Live operation 
 Useful with any percussion setup. 

  Before a performance, we can quickly train the 
system for a particular percussion setup. 
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THE PRIMARY TAKEAWAY  

 Gamma Mixture Model 
  For learning spectral drum templates. 
  Cheaper to train than GMM 
  More stable than GMM 

 Non-negative Vector Decomposition (NVD) 
  For computing template activations from drum onsets. 
  Learning multiple templates per drum improves 

separation. 
  The use of “tail” templates reduces false positives.  
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DRUM SEPARATION SYSTEM 
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ONSET DETECTION 

audio in
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onset detection function
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• Detection function: Differentiated log-energy of multiple 
perceptual sub-bands. 
• On 2400 drum strikes, our adaptive threshold achieves:  

• 85% recall, 99.9% precision. 
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SPECTROGRAM SLICES 
  Extracted at onsets. 
  Each slice contains 100ms (~17 frames) of audio 
  80 bark-spaced bands per channel [Battenberg 2008] 

  During training, both “head” and “tail” slices are extracted. 
  Tail templates serve as decoys during non-negative vector 

decomposition. 

Head Slice Tail Slice 

33ms 67ms 100ms 
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DRUM SEPARATION SYSTEM 
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TRAINING DRUM TEMPLATES 

  Instead of taking an “average” 
of all training slices for a single 
drum… 

 Cluster them and use the 
cluster centers as the drum 
templates.  
  This gives us multiple  

templates per drum… 
  Which helps represent the 

variety of sounds that can be 
made by a single drum. 
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CLUSTERING USING MIXTURE MODELS 

 Train using the Expectation-Maximization (EM) 
algorithm. 

 Gaussian Mixture Model (GMM) 
  Requires expensive/unstable covariance matrices 
  Enforces a Euclidean distance measure. 

 
 

 Gamma Mixture Model 
  Single mean vector per component 
  Enforces an Itakura-Saito (IS) distance measure 

  A scale-invariant perceptual distance between audio spectra. 

 
 

dIS(X ,Y ) =
�

ω

�
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GAMMA DISTRIBUTION 

 Our mixture model is composed of gamma 
distributions. 

 The gamma distribution models the sum of k 
independent exponential distributions.   
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p(y|λ ,k) = yk−1 λ ke−λy

Γ(k)
, y ≥ 0; λ ,k > 0

E[y] = µ = k/λ
Var[y] = µ2/k = k/λ 2

p(y|λ ,k) = yk−1 λ ke−λy

Γ(k)
, y ≥ 0; λ ,k > 0

E[y] = µ = k/λ
Var[y] = µ2/k = k/λ 2

p(y|λ ,k) = yk−1 λ ke−λy

Γ(k)
, y ≥ 0; λ ,k > 0

E[y] = µ = k/λ
Var[y] = µ2/k = k/λ 2



AGGLOMERATIVE CLUSTERING 

  How many clusters to train? 
  We use Minimum Description Length (MDL) to 

choose the number of clusters. 
  Negative log-likelihood  
  + penalty term for number of clusters. 

  1. Run EM to convergence. 
  2. Merge the two most similar clusters. 
  3. Repeat 1,2 until we have a single cluster. 
  4. Choose parameter set with smallest MDL. 
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AGGLOMERATIVE CLUSTERING WITH MDL 

Ground Truth Mixture Data 
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DECOMPOSING ONSETS ONTO TEMPLATES 
 Non-negative Vector Decomposition (NVD) 

  A simplification of Non-negative Matrix Factorization 
(NMF) 

  W matrix contains drum templates in its columns. 
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min
�h

dIS(�x,W�h), hi ≥ 0 ∀i
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DECOMPOSING ONSETS ONTO TEMPLATES 
 To solve this problem: 

 We use the IS distance as the cost function in the 
above. 
  While the IS distance is not strictly convex, in 

practice it is non-increasing under the following 
update rule: 
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�hi ← �hi.
W T ((W�hi).−2.�xi)

W T (W�hi).−1

min
�h

dIS(�x,W�h), hi ≥ 0 ∀i



DECOMPOSING ONSETS ONTO TEMPLATES 

 What do we do with the output of NVD? 
  The head template activations for a single drum are 

summed to get the total activation of that drum. 
  The tail template activations are discarded. 

  They simply serve as “decoys” so that the long decay of a 
previous onset does not affect the current decomposition as 
drastically. 
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BUILDING/TESTING THE SYSTEM 

  Implemented in Python with Scipy 
  NVD can easily be done in real-time (100ms latency) 
  Agglomerative Gamma Mixture Model training takes ~20 

seconds for 5 drums. 
  Could be reduced to < 1 sec using a GPU implementation. 

  Parameters to vary for testing: 
  Number head/tail templates per drum  

  {0, 1, MDL-optimal} 
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QUANTITATIVE RESULTS 

  We test using a total of 10 drum 
performances: 
  10 minutes total, 2922 drum onsets 
  Recorded as midi data  

  Roland V-Drums 
  Audio created using multi-sampled 

drum kit 
   Superior Drummer 2.0 

  Onset detection results 
  85% recall, 99.9% precision 

  Decomposition results 
  Cosine similarity for true 

activations 
  Amplitude sum for false 

activations 
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QUANTITATIVE RESULTS 

  Significant improvements seen 
with: 
  > 1 head template 
     1 tail templates 
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AUDIO EXAMPLES 

 Track 1 - Basic 4/4 rock beat (quantized)   

Original Performance 

KH=MDL-Optimal, KT=1 

KH=1, KT=0 
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AUDIO EXAMPLES 

 Track 3 - Cut time rock with open hi-hat 
 Original Performance 

KH=MDL-Optimal, KT=1 

KH=1, KT=0 
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AUDIO EXAMPLES 

 Track 7 - Accented snare drum roll. 
 Original Performance 

KH=MDL-Optimal, KT=1 

KH=1, KT=0 
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SUMMARY 

  Drum separation front end for a complete drum 
understanding system. 

  Gamma Mixture Model 
  Cheaper to train than GMM (no covariance matrix) 
  More stable than GMM (no covariance matrix) 
  Allows clustering with perceptual Itakura-Saito distance 

  Non-negative Vector Decomposition 
  Greatly improved with tail templates and multiple head 

templates per drum. 

  Next steps 
  Explore online training of templates. 
  Integration with complete drum understanding system. 
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KIITOS 
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EXTRA SLIDES 
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GAMMA MIXTURE MODEL 

 Multivariate Gamma (independent components): 

 Mixture density: p(�y|�λ ,k) =
M

∏
i=1

λ k
i yk−1

i e−λiyi

Γ(k)

p(�yn|θ) =
K

∑
l=1

πlp(�yn|�λl ,k)

πl = p(xn = l)

p(�y|�λ ,k) =
M

∏
i=1

λ k
i yk−1

i e−λiyi

Γ(k)

p(�yn|θ) =
K

∑
l=1

πlp(�yn|�λl ,k)

πl = p(xn = l)
θ = {�λl ,πl}K

l=1
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THE EM ALGORITHM: GAMMA EDITION 

  E-step: (compute posteriors) 

 
  M-step: (update parameters)     

p(xn = l|�yn,θ (t)) =
πl exp(−k dIS(�yn,�µl))

∑K
j=1 π j exp(−k dIS(�yn, �µ j))

N∗
l =

N

∑
n=1

p(xn = l|�yn,θ (t))

�λl ←
kN∗

l

∑N
n=1 �ynp(xn = l|�yn,θ (t))

πl ←
N∗

l
N
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AGGLOMERATIVE CLUSTERING 

  How many clusters to train? 
  We use Minimum Description Length (MDL) to 

choose the number of clusters. 
  Negative log-likelihood  
  + penalty term for number of clusters. 

  1. Run EM to convergence. 
  2. Merge the two most similar clusters. 
  3. Repeat 1,2 until we have a single cluster. 
  4. Choose parameter set with smallest MDL. 
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MDL(K,θ) = −
N

∑
n=1

log

�
K

∑
l=1

p(�yn|�λl)πl

�
+ 1

2 L log(NM)

L = KM+(K −1)


