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Calculating Musical Rhythm Similarity
Eric Battenberg

Abstract—We present a method for comparing the
rhythm of two songs. We use self-similarity features called
beat spectra that are used to train a Gaussian mixture
model which then describes the rhythm of a song. The
mixture model parameters of two songs are compared us-
ing a perceptually-motivated approximation of the KL-
divergence between mixture models.

Index Terms—rhythm similarity, music information re-
trieval, machine learning

I. Introduction

AUTOMATIC music information retrieval is an im-
portant topic in today’s world due to the increas-

ing prevalence of digital media in our daily lives. More
and more people are amassing countless gigabytes of com-
pressed digital audio on their hard drives and portable
players. Most listeners are limited to sorting their music by
artist, album, genre and other types of metadata tagged to
their music files. This type of organization makes it very
difficult to find songs that actually sound similar or have a
common feel. Music information retrieval attempts to solve
this problem by automatically providing supplemental in-
formation about a song that can be used to compare it to
others. There are a number of techniques that compare
songs by the timbre, or spectral qualities, of the audio;
however, rhythmic similarity, though very important per-
ceptually, hasnt seen as much action. Some authors have
pursued methods to calculate individual characteristics of
rhythm, such as tempo , meter, and swing, but systems
which characterize the patterns and overall rhythmic feel
of a song are lacking. We attempt to make progress in
this area by modeling and comparing the self-similarity in
songs.

II. Methods

A. Feature Extraction and Clustering

The first step in calculating self-similarity within a song
is to compute features which describe the spectral content
within a small window of time. The most basic feature set
with this property is the short-time Fourier transform. A
method which more efficiently describes the spectral enve-
lope with respect to the human auditory system involves
computing mel-frequency cepstral coefficients (MFCCs), a
feature set which is widely used within the speech recog-
nition community. MFCCs are created by summing the
energy in sub-bands distributed according the mel scale, a
perceptual auditory scale. The log of this vector of sub-
band energies is taken and then transformed using a dis-
crete cosine transform (DCT). Only a relatively small num-
ber of (usually the first 13-20) DCT coefficients need to be
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retained in order to adequately describe the spectral enve-
lope of a 23ms window of time.

After MFCCs are computed for each half-overlapping
23ms frame of a song, self-similarity values can be com-
puted between pairs of frames. Frames are compared us-
ing the squared Euclidean distance between their MFCCs,
i.e. if �xi and �xj are vectors containing the MFCCs of two
frames, we compute:

d(i, j) = (�xi − �xj)T (�xi − �xj) (1)

We then store the results in a matrix where the (i, j)th
entry contains d(i, j). This type of similarity matrix was
introduced by Foote in [1]. An example similarity matrix
is shown in Figure 1.
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Fig. 1. Similarity matrix from 7 seconds of AC/DC’s Back in Black.
The axis labels are scaled to show time rather than frame number.

To get a final representation of the rhythmic periodicities
of an audio signal, sums can be taken over a certain range,
R, along each of L diagonals of the similarity matrix:

Bm(l) = −
(m+1)R−1∑

i=mR

d(i, i+ l), for l = 0, 1, . . . L−1. (2)

This results in a signal which Foote calls the “beat spec-
trum” [1]. The beat spectrum is basically the strength of
the similarity at each lag time l.

Beat spectra, Bm(l), are extracted for values of m that
cover the entire song (about 100 beat spectra for a four
minute song). Then the first 116ms of each 4.75 sec beat
spectrum is thrown out as suggested in [2], leaving 400
samples. Next the DCT is taken and only the first 50
coefficients are retained, sine faster variations in the beat
spectrum are unimportant to rhythmic description.

Finally, the beat spectra of a song are clustered using
expectation-maximization on a Gaussian mixture model
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Fig. 2. Example beat spectrum from AC/DC’s Back in Black.
Strong similarity is apparent at lags of 1.25, 2.5, and 3.75 seconds.

(GMM) (initialized using k-means on random initial
means). A diagonal covariance matrix was assumed since
the DCT hopefully decorrelates the components. Five clus-
ters were adequate to describe rhythmic variations in typ-
ical pop songs. For each cluster, c, we arrive at a mean
vector, �μc, and covariance matrix, Σc. These are the final
parameters used to describe the rhythm in a song. A block
diagram summarizing the feature extraction and clustering
process for a single song is shown in Figure 3.
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Fig. 3. Block diagram of feature extraction and model training.

B. Model Comparison

The goal of this project was not only to extract a rhyth-
mic description of a song, but to make a meaningful rhyth-
mic comparison between songs. To achieve this we need to
compare the model parameters of two songs somehow. An
obvious choice to compare two probability distributions
would be the Kullback-Leibler divergence; however, there
is no analytic formula for the KL divergence between two
GMMs.

The most accurate method of approximation is Monte
Carlo sampling [3]; however, its accuracy comes with com-
putational cost. Another popular method is the earth
mover’s distance [4] proposed for image retrieval. This,
however, requires a complex dynamic programming algo-
rithm.

A relatively simple method that performs fairly well is
the Goldberger approximation [5]. This method involves
matching the most similar clusters to each other and then
computing a weighted sum of the KL divergence between
each of the matched Gaussian clusters. If fa and gb are
the distributions of the ath and bth clusters of mixtures f

and g and πa and ωb are the priors of each cluster, the best
matching clusters are determined as:

m(a) = arg min
b

DKL(fa||gb) − log(ωb) (3)

Goldberger’s approximation is then:

DKL(f ||g) =
∑

a

πa

(
DKL(fa||gm(a) + log

πa

ωm(a)

)
(4)

Although this approximation does not possess as many
desirable theoretical properties as other approximations, it
still performs well empirically [3].

C. Tempo-Similarity Distance

The KL divergence between clusters can be calculated
from the following expression:

DKL(N0||N1) =
1
2

(
log

(
detΣ1

detΣ0

)
+ tr(Σ−1

1 Σ0) − N (5)

+(μ1 − μ0)T Σ−1
1 (μ1 − μ0)

)

The second line is interesting because it is basically the
Euclidean distance between mean vectors in which the in-
dividual differences are weighted by the inverse covariance
matrix. In our case, with a diagonal covariance matrix,
the differences are simply divided by the variance of each
component. This Euclidean distance weighted comparison
is similar to the beat spectrum comparison proposed by
Foote in [2]:

D( �B1, �B2) = ( �B1 − �B2)T ( �B1 − �B2) (6)

The problem with this comparison is that it leaves out
the fact that peaks at nearby lag times would sound al-
most indistinguishable to a person. As an extreme exam-
ple, consider two beat spectra with very narrow peaks at
1.16 sec and 1.22 sec respectively. The Euclidean distance
between beat spectra would be very large since the peaks
occur where the opposite beat spectrum takes a value close
to zero. To a listener though, these periodicities represent
tempos of 52 and 49 beats per minute, an undetectable
perceptual distance. To remedy this problem, we propose
the tempo-similarity distance (TSD):

DTS( �B1, �B2) = ( �B1 − �B2)T ST ( �B1 − �B2) (7)

where ST is a matrix which holds the perceived similarity
between beat spectrum components. We implement ST

by stacking normalized triangular kernels centered at each
lag time with widths proportional to the “just noticeable
difference” (JND) at the corresponding tempo. According
to [6], the JND is approximately 8% of the reference tempo.
The TSD is compared to Euclidean distance for a basic
rock beat at various tempos in Figure 4.
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Fig. 4. The distance between a basic rock beat at various tempos.
For the tempo-similarity distance, notice how faster tempos have a
more gradual slope as tempo is varied linearly.

Now that we’ve introduced the tempo-similarity dis-
tance, we must factor it into our cluster KL divergence cal-
culations. The diagonal covariance matrix can be factored
and ST placed between, yielding the modified distance-
related term from the second line of eqn. 5:

(μ1 − μ0)T Σ− 1
2

1 ST Σ− 1
2

1 (μ1 − μ0) (8)

However, the beat spectrum components have been
transformed by the DCT, so the tempo-similarity matrix
needs to be calculated using the center frequency of each
DCT component, rather than the lag time of each beat
spectrum component as in eqn. 7.

This modified distance term in the KL divergence bears
strong resemblance to the tempo-similarity distance in eqn.
7. It is basically the TSD between the mean beat spectra
of two clusters with the differences divided by the stan-
dard deviation of the corresponding component. We can
make the following simple transformation to a cluster’s co-
variance matrix so that tempo similarity properties will be
inherent to the original KL divergence:

Σ′
c = Σ

1
2
c S−1

T Σ
1
2
c (9)

The first term on the first line of eqn. 5 remains un-
changed from this transformation due to properties of the
determinant. The second term, involving the trace, does
change and must be computed using covariance matrices
transformed as in eqn. 9.

III. Results

The rhythm similarity system described in the previous
section was tested on a set of six songs. Two rhythmi-
cally similar songs were chosen from each of three artist:
Bob Marley, Santana, and AC/DC (see Figure III). The
genre of each artist can be described as reggae, Latin rock,
and hard rock, respectively. All songs had relatively slow
tempos in order to demonstrate the discriminative abil-
ity of the system. The rhythmic distance between songs,
calculated using transformed covariance matrices in the
Goldberger approximation of the KL divergence between

models, is displayed in Figure III. For comparison, we
also include the distance computed when using the modu-
lation spectrum of note onset energies to train the mixture
models. This feature set is another valid description of
rhythmic periodicities. Onset energies are frequently used
in tempo estimation as in [7]. Though effective for pure
tempo estimation, the onset energies do not perform nearly
as well as the beat spectrum in our implementation.

Artist Song
1. Bob Marley Is This Love
2. Bob Marley Buffalo Soldier
3. Santana Black Magic Woman
4. Santana Evil Ways
5. AC/DC Back in Black
6. AC/DC Deep in the Hole

Fig. 5. Songs used in distance calculations

The results achieved using the beat spectrum features
seem to match better with perceived differences. The
AC/DC songs both have a slow, heavy, driving beat and
our system shows them to be strongly similar, though very
different from the other artists. The songs by both Bob
Marley and Santana are similar to each other with Evil
Ways having a slightly faster tempo, and, therefore, a
larger distance from the other songs.

The results achieved using the onset modulation spec-
trum are not completely undesirable, since similarities are
still evident within two of the artists. As with any real-
world implementation, the results are highly dependent on
the variable parameters chosen in the particular implemen-
tation. Though the beat spectrum performs better in this
instance, both feature sets may prove useful for describing
rhythm in this type of system.

IV. Conclusion

The main contribution of this project seems to be the
perceptually-motivated tempo-similarity distance used to
compare two rhythm models. This technique more accu-
rately models how humans judge tempo differences and
it performs well in our very limited trials. Along with the
TSD, the beat spectrum was presented as a valid feature to
be used in rhythmic comparison. Its discriminative capa-
bilities are very good when used to train a mixture model
to represent the rhythm of a song.

The system presented here has much room for improve-
ment. There are many parameters used in the implementa-
tion that can be optimized to yield better results and more
efficient computation. A first step in future work would be
to test this system using a much larger catalog of songs to
gauge its true potential.
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Fig. 6. Distances between the mixture models describing each song.
The top matrix uses beat spectrum features, while the bottom matrix
uses onset modulation spectrum features.
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