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1 Introduction and Methods 

The acoustic guitar is a stringed musical instrument frequently used in popular music. Because it 

is common in dorm rooms across the country and can be analyzed using a simple linear model, we 

thought it a fitting instrument for a theoretical and experimental analysis.  

In this project, we will attempt to quantify certain aspects that affect the way sound is produced 

by the acoustic guitar. In the remainder of this section, we will summarize the theoretical model and the 

signal analysis techniques we will use. In Section 2, we will cover the affects that picking location has on 

the harmonic distribution of a guitar note. In addition, we show that by comparing the results of the 

signal analysis with the theoretical model for picking location, we can approximate the picking location 

used to create a recorded note. In Section 3, we look into the subtle implications of tuning systems used 

in western music and how they influence the guitar. In Section 4, we examine natural harmonics, which, 

in addition to fretting, are a way to create new pitches on a guitar string. 

 

1.1 Theoretical Analysis 

 

 Since the acoustic guitar is a stringed instrument, we plan to carry out theoretical analysis using 

the one dimensional wave equation. This is a completely linear model of a vibrating string, so the 

harmonic implications derived from it ignores non-linearities such as string stiffness, dullness introduced 

by skin oil and aging, and other material properties of the strings beyond linear density and tension.  

 The 1-D wave equation is shown below, where T represents the string tension, ρL represents its 

linear density, and c the wave speed along the string: 

 

 

  

The general complex-form solution to the above differential equation is shown below, where the 

leading constants are complex-valued: 

 

 

 

For a guitar string that is fixed at both ends (x=0 and x=L), we have boundary conditions that restrict the 

solution space further.  When we plug in these boundary conditions and take the real part of the 

possible solutions, we are left with a solution that can be written as a linear combination of 

harmonically-related sinusoids.   

 

 

 

In this case, the fundamental frequency of the string is               and all other possible frequencies 

are multiples of this frequency.   

 

We will use these implications of the 1D wave equation as a starting point for our theoretical analysis. 
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1.2 Experimental Analysis 

 

 Our experimental analysis will consist of frequency domain signal analysis. To do this, we use 

Matlab’s pwelch function, which implements Welch’s method for estimating power spectral density, 

along with a Hann window of length 32768.  Welch’s method is a method of spectral analysis that 

reduces noise introduced by time-dependent variations at the expense of decreased frequency 

resolution. Welch’s method breaks the signal up into overlapping frames of samples and applies an 

optional window function. The discrete Fourier transform is then applied to each frame. The resulting 

magnitude spectrum is averaged across frames to get the final spectrum estimate.  

The Hann window is a type of raised cosine window that is very widely used in signal analysis.  

Compared to the flat rectangular window, the Hann window has a wider main lobe and much smaller 

side lobe height in its frequency response (see plots below).   This means that a Hann window affords 

much greater suppression of far-reaching frequency component interference while introducing a bit of 

local distortion in the frequency domain.  When examining an audio signal to find the magnitude of its 

harmonic components, we felt that the Hann window would work well. 

 

 
 

We use half-overlapping frames of length 32768 on 3 second monaural audio clips sampled at 44.1kHz. 

This results in about 8 windowed frames and a frequency resolution of 1.35Hz.  

  



2 Analysis of Picking Location

 

Anyone who plays guitar or another stringed instrument know

the acoustic qualities of the resulting note.  In this section, we attempt to quantify this effect.  In 

addition, we describe our attempt to use the theoretical and experimental analyses

method to determine picking location based on only recorded audio data. 

 

2.1 Picking Location and the 1D Wave Equation

 

Starting from where we left off in Section 1.1, w

vibration allowed on a guitar string 

 

 

 

Then if the initial position of the string 

 

 

 

 

Note that the solution for y(x,t)  in eq. (4) i

resistance and internal string friction would result

exponentially decay at different rates. We hope that the short 3 second audio signals wi

the influence of these factors on the spectral analysis.

 We use a general triangular shape for the initial position function 

 

 

 

 

 

 

 

 

Using equation (5), the amplitude of each harmonic resulting from 
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2 Analysis of Picking Location 

or another stringed instrument knows that picking location

the acoustic qualities of the resulting note.  In this section, we attempt to quantify this effect.  In 

addition, we describe our attempt to use the theoretical and experimental analyses to develop a 

method to determine picking location based on only recorded audio data.  

2.1 Picking Location and the 1D Wave Equation 

Starting from where we left off in Section 1.1, we can further restrict the solution space 

wed on a guitar string by imposing zero initial velocity in the string: 

Then if the initial position of the string is a function f(x), we can solve for the coefficients 

in eq. (4) is not time limited and would oscillate forever.  In reality, air 

resistance and internal string friction would result in losses that would cause harmonic components to 

exponentially decay at different rates. We hope that the short 3 second audio signals wi

the influence of these factors on the spectral analysis. 

We use a general triangular shape for the initial position function f(x), shown below.  

 

 

Using equation (5), the amplitude of each harmonic resulting from f(x) above can be written as:

∑
∞

=

=⇒=⇒
1

n sincos),(0
n

nnn xktAtxyB ω

∫=⇒
L

n dxxkxf
L

A
0

n sin)(
2









−

=
L

np

pLp

L

n

h π
π

sin
)(

2

22

that picking location influences 

the acoustic qualities of the resulting note.  In this section, we attempt to quantify this effect.  In 

to develop a 

e can further restrict the solution space of the modes of 

, we can solve for the coefficients An.   

s not time limited and would oscillate forever.  In reality, air 

in losses that would cause harmonic components to 

exponentially decay at different rates. We hope that the short 3 second audio signals will help reduce 
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2.2 Determining Picking Location from an Audio Sample 

Since we will already be comparing the theoretical and experimental analyses of the effects of 

picking location, we thought it fitting to attempt to automatically determine a best fit picking location 

based only on the data contained in an audio clip of a guitar note being played.  The first step in this 

process is automatically determining the frequency location and amplitude of the harmonic components 

of a signal.   

To do this, we wrote a Matlab script that finds a best fit fundamental frequency and then locates the 

harmonic components at multiples of this frequency.  The steps we use are listed below. 

 

Finding the fundamental (f0) 

1. Welch’s method with Hann window to extract spectrum 

2. Convert magnitudes to decibels relative to maximum magnitude 

3. Find all local maxima in the spectrum  

4. Eliminate local maxima below a string dependent frequency threshold 

5. Eliminate local maxima which aren’t the largest within a 20Hz window 

6. f0 is set to be the location of the remaining local maximum with the lowest frequency 

 

Finding the harmonics 

Steps 1, 2, and 3 as above 

4.  Eliminate local maxima which are below f0 

5.  Eliminate local maxima which aren’t the largest within 0.75xf0  

 

Using these procedures, we locate the first 14 harmonics of each guitar note. The harmonics are 

denoted by green circles overlaid on the corresponding magnitude spectrum for three different picking 

locations below – 12
th

 fret (31.65cm from the bridge), 15cm from the bridge, and 5cm from the bridge. 

As you can see, the method summarized above does a good job of picking out only the harmonics while 

ignoring all noisy spikes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once we have located the first 14 harmonics of a guitar note, we can try to match the actual 

harmonic distribution with the theoretical harmonic distribution for a given picking distance.  To do this, 

we iterate over the theoretical harmonic distributions for picking locations along the neck of the guitar 

separated by 0.1mm. Each theoretical distribution is compared to the actual distribution using a 



weighted mean-squared error criterion that places more importance on lower harmonics.  The weights 

are computed using a Gaussian curve that decays to 0.5 by the time it reaches the 14
th

 harmonic.  

  The harmonic distribution with the lowest weighted mean-squared error is chosen as the 

matching picking location.  For the three picking locations shown in the previous plots, the theoretical 

harmonic distributions chosen by our matching algorithm are shown below as red circles. 

 

 

 

 

 

 

 

 

The matching picking locations are shown in the table below.  Though the matched distances are not 

exact, they do correlate well with the actual distances used to produce the signals. Differences are most 

likely caused by non-linearities missing from the model such as string stiffness and the rate of decay of 

harmonics. 

  

Actual Picking Location Matched Picking Location 

31.65cm  (12
th

 fret) 32.31cm 

15cm 13.79cm 

5cm 2.75cm 

 

  



3 Analysis of Tuning Systems 

 

 In music theory, a tuning system is the way in which the pitches of musical instruments are 

related. The acoustic properties of harmonies created by multiple pitches sounding simultaneously are 

related to the intervals between the pitches.  Just intonation is a system in which all pitch intervals 

correspond to a ratio of whole numbers between the frequencies of each pitch.  For example, the 

frequency ratio for a perfect fifth, an interval regarded as consonant or pleasant sounding, is 3:2.  

 The problem with the just intonation system of tuning is that because pitch frequencies are 

determined with respect to a single reference note, an instrument would have to be re-tuned every time 

the musician wants to change keys or chords.  To address this problem, western music has widely 

adopted the equal temperament system of tuning. Equal temperament approximates the intervals 

defined by just intonation using a constant ratio between adjacent frequencies. This ratio is calculated 

such that there are 11 distinct pitches, or semitones, before the next octave is reached (or before the 

original pitch is doubled in frequency).  This ratio is then equal to ��
��

� ���	
	. Using equal 

temperament, the ratio for a perfect fifth, an interval of 7 semitones, is �
�
�� � ���
� as opposed to the 

1.5 prescribed by just intonation. This difference, while small, can actually influence the timbre or 

spectral quality of a musical interval enough that it is unpleasant to a trained ear.  A table comparing the 

two tuning systems for the first 8 musical intervals is shown below. 

  

Interval Name 
Exact value in 

Equal Temperament 

Decimal value in 

Equal 

Temperament 

Just intonation 

interval 

Difference in Hz 

For a 400Hz root 

Unison (C) 2^(0/12) 1.000000 1/1= 1.000000 0 

Minor second (C♯) 2^(1/12) 1.059463 16/15= 1.066667 2.8816 

Major second (D) 2^(2/12) 1.122462 9/8= 1.125000 1.0152 

Minor third (D♯) 2^(3/12) 1.189207 6/5= 1.200000 4.3172 

Major third (E) 2^(4/12) 1.259921 5/4= 1.250000 -3.9684 

Perfect fourth (F) 2^(5/12) 1.334840 4/3= 1.333333 -0.6028 

Augmented fourth (F♯) 2^(6/12) 1.414214 7/5= 1.400000 -5.6856 

Perfect fifth (G) 2^(7/12) 1.498307 3/2= 1.500000 -0.6772 

  

 The right column of the table shows the frequency difference in Hz between the two tuning 

systems when the root pitch is set to 400Hz. Differences of a few Hertz are seen for some intervals.  

These differences have even stronger implications when harmonies consisting of greater than two notes 

are constructed. For example, a major triad, made up of a root, major third, and perfect fifth, at 400Hz 

contains pitches with fundamental frequencies 400Hz, 500Hz, and 600Hz using just intonation. Using 

equal temperament, these frequencies are 400Hz, 504Hz, and 599Hz.  Below, signals containing these 

frequencies are plotted.  The left plot contains the just intonation frequencies; the right plot, the equal 

temperament frequencies.  Strong beating is seen in the amplitude envelope which is caused by the 

frequency deviations in the equal temperament intervals.  

 

 

  

 

  



Even though just intonation preserves the ideals aspects of musical harmony, it would make 

sense that acoustic guitars are constructed using equal temperament intervals between the frets.  We 

examine the frequency ratios using the fundamental frequency finding method covered in Section 2.2.  

The first eight notes on the G string are analyzed and their fundamentals are extracted.   The frequency 

ratios for these notes are listed in the table below along with the corresponding ratio for the two tuning 

systems.  

 

Interval (Note)  Frequency  Ratio  ET Ratio  JI Ratio  Closer 

Unison (G)  199.86  1.000  1.000  1.000  - 

Minor 2
nd

 (G#)  212.64  1.064  1.059  1.067  JI 

Major 2
nd

  (A)  225.43  1.128  1.122  1.125  JI 

Minor 3
rd

 (A#) 238.21  1.192  1.189  1.200  ET 

Major 3
rd

 (B)  252.34  1.263  1.260  1.250  ET 

Perfect 4
th

 (C)  266.47  1.333  1.335  1.333  JI 

Augmented 4
th

 (C#)  282.62  1.414  1.414  1.400  ET 

Perfect 5
th

 (D)  298.77  1.495  1.498  1.500  ET 

 The rightmost column shows which tuning system explains the observed frequency ratio best. 

While equal temperament seems to barley edge out just intonation, it is likely that noise in the 

measurements combined with possibly low-quality construction of the test guitar made the results 

closer than they should’ve been.  Using equal temperament tuning in a guitar makes much more sense 

from a practical standpoint.  

  



4 Analysis of Natural Harmonics 

In addition to creating new pitches by fretting a guitar, thereby changing the length of the string, 

new notes can be created by lightly touching a string at a specific location to prevent vibrations at that 

point.  New pitches created in this way are called natural harmonics.  Doing this adds additional 

conditions to those imposed by the boundary conditions covered in eq. (3) of Section 1.1.  The boundary 

conditions have already limited the solution space to the following: 

 

 

 

By forcing the displacement on the string to zero at a specific distance from the bridge d, we force the 

amplitude of the nth harmonic to zero unless  
�

�
� is a whole number, i.e. 

 

 

 

We approximate the fret locations using the just intonation interval ratios between the open string pitch 

and the pitch at that fret location. These ratios then represent the ratio of the original length of the 

string to the fretted length.  The chart below shows which of the harmonics of a string are still allowed 

to vibrate when a finger is placed at the 5
th

, 7
th

, and 9
th

 frets. The just intonation ratio for the 5
th

 fret (a 

perfect 4
th

) is 4/3. Therefore, the string must be shortened to ¾ the original length to get a perfect 4
th

, 

and  
�

�
�

�

�
. This ratio is only equal to a whole number when multiplied by a multiple of 4, so we are left 

with harmonics 4, 8, 12, 16, etc. These harmonics correspond to those of the same pitch as the open 

string raised by two octaves.  Therefore, the natural harmonic created by placing a finger at the 5
th

 fret 

gives us an interval of 2 octaves. 

 Likewise, the natural harmonic created at the 7
th

 fret leaves us with harmonics 3, 6, 9, 12, etc. 

These harmonics correspond to an interval of an octave (x2) plus a perfect fifth (x1.5).   A natural 

harmonic at the 9
th

 fret gives us harmonics at multiples of 5, corresponding to 2 octaves (x4) plus a 

major third (x1.25).  These harmonic distributions can be visualized more easily with the aid of the table 

below.  

 

Fret (1/JI ratio)  5   (3/4)  7   (2/3)  9   (3/5)  

n     

1     

2     

3   ♫  

4  ♫   

5    ♫ 

6   ♫  

7     

8  ♫   

9   ♫  

10    ♫ 
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 As an example, we examined the audio signal created by a natural harmonic at the 5
th

 fret on the G 

string.  The spectrum of the original open string is shown on the left with the harmonics labeled with 

green circles.  The 5
th

 fret natural harmonic spectrum appears on the right, and we can see that all 

harmonics except for the 4
th

, 8
th

, 12
th

, and 16
th

 have been practically eliminated. 

 

 

 

5 Discussion 

 

This project has attempted to quantify certain aspects of the acoustic guitar, namely, the influence 

of picking location on harmonic distribution, the tradeoff between convenience and interval quality 

present in different tuning systems, and the theoretical and acoustic properties of natural harmonics.   

We have shown that the influence of picking location can be modeled and used to recognize the 

picking location used to play a particular note. Even though a simple linearized model is used, the 

accuracy is enough to provide useful information.   In order to use this method to annotate an automatic 

guitar music transcription system, the robustness must be increased.  This could be accomplished by 

introducing additional components into the model to describe the decay of harmonics and the influence 

of the material properties of different strings. In addition, using some sort of supervised (trained) 

machine learning method to help make decisions about best matching distances would increase the 

accuracy of the system and make it less sensitive to noise.  

 


