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TOWARD COMPREHENSIVE RHYTHMIC 
UNDERSTANDING 

  Or “Live Drum Understanding” 
  Goal: Go beyond simple beat tracking and provide 

context-aware, instrument-aware information in real-
time, e.g. 
  “This rhythm is in 5/4 time” 
  “This drummer is playing syncopated notes on the hi-hat” 
  “The ride cymbal pattern has a swing feel” 
  “This is a Samba rhythm” 
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LIVE DRUM UNDERSTANDING SYSTEM 
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• This work. 

• Gamma Mixture Model 
training of drum templates 

• Non-negative decomposition 
onto templates. 

• HMM-based 
multi-hypothesis  
beat tracking. 

• Statistical deep learning of 
drum patterns  

• Stacked Conditional Restricted 
Boltzmann Machines 

✓ ✓ 
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REQUIREMENTS FOR DRUM SEPARATION 

 Real-Time/Live operation 
 Useful with any percussion setup. 

  Before a performance, we can quickly train the 
system for a particular percussion setup. 
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THE PRIMARY TAKEAWAY  

 Gamma Mixture Model 
  For learning spectral drum templates. 
  Cheaper to train than GMM 
  More stable than GMM 

 Non-negative Vector Decomposition (NVD) 
  For computing template activations from drum onsets. 
  Learning multiple templates per drum improves 

separation. 
  The use of “tail” templates reduces false positives.  
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DRUM SEPARATION SYSTEM 
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ONSET DETECTION 

audio in
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onset detection function
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• Detection function: Differentiated log-energy of multiple 
perceptual sub-bands. 
• On 2400 drum strikes, our adaptive threshold achieves:  

• 85% recall, 99.9% precision. 
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DRUM SEPARATION SYSTEM 
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SPECTROGRAM SLICES 
  Extracted at onsets. 
  Each slice contains 100ms (~17 frames) of audio 
  80 bark-spaced bands per channel [Battenberg 2008] 

  During training, both “head” and “tail” slices are extracted. 
  Tail templates serve as decoys during non-negative vector 

decomposition. 

Head Slice Tail Slice 

33ms 67ms 100ms 
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DRUM SEPARATION SYSTEM 
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TRAINING DRUM TEMPLATES 

  Instead of taking an “average” 
of all training slices for a single 
drum… 

 Cluster them and use the 
cluster centers as the drum 
templates.  
  This gives us multiple  

templates per drum… 
  Which helps represent the 

variety of sounds that can be 
made by a single drum. 
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CLUSTERING USING MIXTURE MODELS 

 Train using the Expectation-Maximization (EM) 
algorithm. 

 Gaussian Mixture Model (GMM) 
  Requires expensive/unstable covariance matrices 
  Enforces a Euclidean distance measure. 

 
 

 Gamma Mixture Model 
  Single mean vector per component 
  Enforces an Itakura-Saito (IS) distance measure 

  A scale-invariant perceptual distance between audio spectra. 

 
 

dIS(X ,Y ) =
�

ω

�
X(ω)

Y (ω)
− log

X(ω)

Y (ω)
−1

�
dω

dEuc(X ,Y ) =
�

ω
(X(ω)−Y (ω))2 dω
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GAMMA DISTRIBUTION 

 Our mixture model is composed of gamma 
distributions. 

 The gamma distribution models the sum of k 
independent exponential distributions.   
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p(y|λ ,k) = yk−1 λ ke−λy

Γ(k)
, y ≥ 0; λ ,k > 0

E[y] = µ = k/λ
Var[y] = µ2/k = k/λ 2

p(y|λ ,k) = yk−1 λ ke−λy

Γ(k)
, y ≥ 0; λ ,k > 0

E[y] = µ = k/λ
Var[y] = µ2/k = k/λ 2

p(y|λ ,k) = yk−1 λ ke−λy

Γ(k)
, y ≥ 0; λ ,k > 0

E[y] = µ = k/λ
Var[y] = µ2/k = k/λ 2



AGGLOMERATIVE CLUSTERING 

  How many clusters to train? 
  We use Minimum Description Length (MDL) to 

choose the number of clusters. 
  Negative log-likelihood  
  + penalty term for number of clusters. 

  1. Run EM to convergence. 
  2. Merge the two most similar clusters. 
  3. Repeat 1,2 until we have a single cluster. 
  4. Choose parameter set with smallest MDL. 
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MDL= 187.8 MDL= -739.8 MDL= -835.6 MDL= -201.5 MDL= 1373 



AGGLOMERATIVE CLUSTERING WITH MDL 

Ground Truth Mixture Data 
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DRUM SEPARATION SYSTEM 
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DECOMPOSING ONSETS ONTO TEMPLATES 
 Non-negative Vector Decomposition (NVD) 

  A simplification of Non-negative Matrix Factorization 
(NMF) 

  W matrix contains drum templates in its columns. 
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min
�h

dIS(�x,W�h), hi ≥ 0 ∀i

Bass Snare Hi-Hat 
(closed) 
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(open) Ride 
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x = 

h 

* 

W 



DECOMPOSING ONSETS ONTO TEMPLATES 
 To solve this problem: 

 We use the IS distance as the cost function in the 
above. 
  While the IS distance is not strictly convex, in 

practice it is non-increasing under the following 
update rule: 
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�hi ← �hi.
W T ((W�hi).−2.�xi)

W T (W�hi).−1

min
�h

dIS(�x,W�h), hi ≥ 0 ∀i



DECOMPOSING ONSETS ONTO TEMPLATES 

 What do we do with the output of NVD? 
  The head template activations for a single drum are 

summed to get the total activation of that drum. 
  The tail template activations are discarded. 

  They simply serve as “decoys” so that the long decay of a 
previous onset does not affect the current decomposition as 
drastically. 
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DRUM SEPARATION SYSTEM 
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BUILDING/TESTING THE SYSTEM 

  Implemented in Python with Scipy 
  NVD can easily be done in real-time (100ms latency) 
  Agglomerative Gamma Mixture Model training takes ~20 

seconds for 5 drums. 
  Could be reduced to < 1 sec using a GPU implementation. 

  Parameters to vary for testing: 
  Number head/tail templates per drum  

  {0, 1, MDL-optimal} 
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QUANTITATIVE RESULTS 

  We test using a total of 10 drum 
performances: 
  10 minutes total, 2922 drum onsets 
  Recorded as midi data  

  Roland V-Drums 
  Audio created using multi-sampled 

drum kit 
   Superior Drummer 2.0 

  Onset detection results 
  85% recall, 99.9% precision 

  Decomposition results 
  Cosine similarity for true 

activations 
  Amplitude sum for false 

activations 
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QUANTITATIVE RESULTS 

  Significant improvements seen 
with: 
  > 1 head template 
     1 tail templates 
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AUDIO EXAMPLES 

 Track 1 - Basic 4/4 rock beat (quantized)   

Original Performance 

KH=MDL-Optimal, KT=1 

KH=1, KT=0 
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AUDIO EXAMPLES 

 Track 3 - Cut time rock with open hi-hat 
 Original Performance 

KH=MDL-Optimal, KT=1 

KH=1, KT=0 
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AUDIO EXAMPLES 

 Track 7 - Accented snare drum roll. 
 Original Performance 

KH=MDL-Optimal, KT=1 

KH=1, KT=0 
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SUMMARY 

  Drum separation front end for a complete drum 
understanding system. 

  Gamma Mixture Model 
  Cheaper to train than GMM (no covariance matrix) 
  More stable than GMM (no covariance matrix) 
  Allows clustering with perceptual Itakura-Saito distance 

  Non-negative Vector Decomposition 
  Greatly improved with tail templates and multiple head 

templates per drum. 

  Next steps 
  Explore online training of templates. 
  Integration with complete drum understanding system. 
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KIITOS 
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EXTRA SLIDES 
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GAMMA MIXTURE MODEL 

 Multivariate Gamma (independent components): 

 Mixture density: p(�y|�λ ,k) =
M

∏
i=1

λ k
i yk−1

i e−λiyi

Γ(k)

p(�yn|θ) =
K

∑
l=1

πlp(�yn|�λl ,k)

πl = p(xn = l)

p(�y|�λ ,k) =
M

∏
i=1

λ k
i yk−1

i e−λiyi

Γ(k)

p(�yn|θ) =
K

∑
l=1

πlp(�yn|�λl ,k)

πl = p(xn = l)
θ = {�λl ,πl}K

l=1
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THE EM ALGORITHM: GAMMA EDITION 

  E-step: (compute posteriors) 

 
  M-step: (update parameters)     

p(xn = l|�yn,θ (t)) =
πl exp(−k dIS(�yn,�µl))

∑K
j=1 π j exp(−k dIS(�yn, �µ j))

N∗
l =

N

∑
n=1

p(xn = l|�yn,θ (t))

�λl ←
kN∗

l

∑N
n=1 �ynp(xn = l|�yn,θ (t))

πl ←
N∗

l
N
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AGGLOMERATIVE CLUSTERING 

  How many clusters to train? 
  We use Minimum Description Length (MDL) to 

choose the number of clusters. 
  Negative log-likelihood  
  + penalty term for number of clusters. 

  1. Run EM to convergence. 
  2. Merge the two most similar clusters. 
  3. Repeat 1,2 until we have a single cluster. 
  4. Choose parameter set with smallest MDL. 
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MDL(K,θ) = −
N

∑
n=1

log

�
K

∑
l=1

p(�yn|�λl)πl

�
+ 1

2 L log(NM)

L = KM+(K −1)


